RAVE: insights to be used for planning of the next generation multiple-object spectrographs

Tomaž Zwitter

University of Ljubljana, Faculty of mathematics and Physics

All Sky panorama in visible light © Axel Mellinger 2000

The RAVE collaboration (alphabetical order):

Anguiano, B.; Bailin, J.; Bienayme, O.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Brown, A.; Burton, D.; Campbell, R.; Cass, P.; Dawe, J.; Dehnen, W.; Evans, N. W.; Fiegert, K.; Re Fiorentin, P.; Fiorucci, M.; Freeman, K. C.; Fulbright, J. P.; Gerhard, O.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Hartley, M.; Helmi, A.; Jauregi, U.; Just, A.; Kelz, A.; Kujken, K.; Matijevic, G.; Minchev, I.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Penarrubia, J.; Quillen, A.; Read, M. A.; Reid, W.; Roeser, S.; Ruchti, G.; Russell, K.; Scholz, R. -D.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Smith, M. C.; Sordo, R.; Steinmetz, M.; Tolstoi, E.; Tomasella, L.; Veltz, L.; Watson, F. G.; Williams, M.; Wylie de Boer, E.; Wyse, R. F. G.; Zwitter, T.

Number of pointings

October 2008: 265.710 spectra covering 16891 square degrees (~16 objects per square degree).

Altogether 325.000 spectra were obtained till now.

A reference system

0.7

Ca∏

 \mathbf{H}

0.9

н

0.95

Call

Η

FeI

0.99

FeI

uhuhuhu

mhunhun

Radial velocities and parameters of stellar atmospheres derived in a reference grid of 50000+ template spectra from the latest Kurucz library

0.5

H

Call H

D.

40000

Fel OI

Fig. 16.— Comparison of calibrated metallicities derived by RAVE to the reference values. Symbol types are as in Figure 15. Points rejected during iterative calculation of metallicity calibration are crossed out.

10000 8000 6000 4000 Teff Fig. 13.— Objects from external datasets on the temperature–gravity–metallicity wedge using the values determined from RAVE spectra. Symbols code individual datasets which were used to check the values of stellar parameters: GCS (•), Apache Point (•), Soubiran (+), M67 (\Box), and Asiago (\triangle).

		a se
	T. C.	
M	ATCH TO REF	ERENCES:
	Zero point	Dispersion
Δ Teff	-7 ± 18 K	188 K
∆ log g	-0.06 ± 0.04	0,38
Δ [M/H] 0.0 ± 0.02	0.18

Check with repeated observations

Repeated observations

1893 objects with \geq 2 observations of radial velocity: Δ RV = 1.8 km/s 855 objects with \geq 2 observations of stellar parameters: Δ Teff = 135 K, Δ log g = 0.2 dex, Δ [M/H] = 0.1 dex

These errors on stellar parameters are <u>less than half</u> of what is derived from comparison with external datasets. So external datasets values may not be error free and RAVE errors are indeed smaller.

If △ RV > 5 km/s this is likely due to binarity (single lined spectroscopic binary). This happens in 6% of the cases. In ~0.6% binarity in a form of a double lined spectroscopic binary detected from a single spectrum.

Errors for repeated observations

Distance determination using stellar models

Error distribution (left) and cumulative plot (middle) for distance. These distributions are for a sample of 16.663 stars. Distance from stellar models versus Hipparcos distance (right).

Individual element abundances

Boeche et al. 2009, in preparation, blue points: Soubiran & Girard (2005).

Zwitter: RAVE experience, ESO spectrosurvey, 10/03/2009

9

Zwitter: RAVE experience, ESO spectrosurvey, 10/03/2009 1

10

Systematic errors: metallicity at low S/N

uncertain continuum placement,

normal stars have absorption spectra, so noise dips interpreted as absorption lines.

To avoid systematics (Zwitter et al.2008):
parameters for individual stars reliable at S/N>20 (green line),
parameters published for statistical use at S/N>13 (yellow line),

 radial velicities published till S/N=6 (red line).

Rough results from the automated RAVE pipeline prior to screening for binaries, coronal emissions and spectral ghosts.

Magnitude and noise distributions

and

Zwitter: RAVE experience, ESO spectrosurvey, 10/03/2009

12

Into the future

	Gaia	Rave
Telescope collecting area	0.725 m^2	1.13 m^2
Total exposure time per object	~528 s	3000 s
Area × time	$383 \text{ m}^2 \text{ s}$	$3390 \text{ m}^2 \text{s}$
CCD readouts per object	~120	5
System throughput	better	worse
Limit for $S/N = 13$		V~13.5

In Gaia effective temperature could be accurately derived from spectrophotometry, and astrometry yields luminosity. Radial velocity spectrograph onboard provides radial velocities, but in many cases Gaia may not be able to provide any information on chemistry, rotational velocity or peculiarities.

Conclusions & recommendations

Rave demonstrates that reliable RVs and stellar parameters (temperature, metallicity, for high S/N spectra also individual element abundances) can be derived from R=7500 spectra with S/N > 20.

Spectrograph with an echidna-type fiber feed and R=7500 is needed to study galactic chemistry. With 1600 fibers it can obtain 2 million spectra/year.

With a 4-m class telescope dedicated to this programme the spectra can provide information on metallicity down to V=17.0, and individual element abundances to V=15.5 (exposure time 3600 s). VLT goes fainter, but may observe less targets (time sharing). Echidna actuator and mount (AAO).

If nothing is done, we may know the kinematics, but not the chemistry of the Galaxy. 2dF-Echidna positioner core with 1585 fibres in the 2dF focal surface.

Determination of stellar parameters with RAVE

RAVE survey: 2nd data release

Zwitter et al., AJ, issue July 2008 (also public release) astro-ph:0806.0546

	all data	new in this DR
Number of nights of observation	141	72
Number of fields (incl. repeats)	517	266
Sky area covered (square degrees)	7,200	2,440
Stellar spectra	51,829	25,850
Number of different stars	49,327	24,010
Number of stars observed once	47,492	22,676
Number of stars observed twice	1,618	1,232

Stellar Heliocentric Radial Velocities

© The RAVE collaboration, background: ©2000 Axel Mellinger

Radial	
velocity	
errors	

Internal RV Errors					
Dataset	Peak (km s ⁻¹)	Average (km s ⁻¹)			
Spectra of normal stars new to DR2	0.9	2.0			
Spectra of all stars new to DR2	0.9	2.5			
Spectra of all stars in DR1	1.7	2.3			
All	1.6	2.3			

Datasets Used to Check the RV Accuracy

Reference dataset	Ν	$\langle \Delta RV \rangle$	$\sigma(\Delta RV)$	
		$({\rm km \ s^{-1}})$	$({\rm km \ s^{-1}})$	
GCS	144	0.34	1.83	
Sophie observations	33	0.63	1.18	
Asiago observations	21	-0.71	1.09	
ELODIE observations	15	0.07	1.32	
All	213	0.26	1.68	
Last three datasets	69	0.10	1.30	

Note. ΔRV is the difference between radial velocities derived by RAVE and those from the reference dataset.

RV errors vs. S/N

Figure 12. Difference of radial velocities as derived by RAVE and by the reference instruments, as a function of the S/N of the RAVE observation. Dots depict individual measurements, the solid line is a running mean (with a boxcar smoothing of ± 15 in S/N). Similarly, the area between the dashed lines includes 68.2% of the measurements, i.e., $\pm \sigma$. The open symbols are measurements of the GCS stars, while the filled ones mark the other three reference datasets.

2009

20

0

-0.5

5

4000

5000

6000

Teff_{rave}

7000

8000

0

-0.5

0

2

3

logg_{RAVE}

Fig. 13.— Objects from external datasets on the temperature-gravity-metallicity wedge using the values determined from RAVE spectra. Symbols code individual datasets which were used to check the values of stellar parameters: GCS (\bullet) , Apache Point (\circ) , Soubiran (+), M67 (\Box) , and Asiago (\triangle) .

Datasets used to check stellar parameters

Reference Dataset	N	$T_{\rm eff}$	$\log g$	[M/H]
Apache Point echelle Asiago echelle Soubiran & Girard catalog M67 members Geneva Copenhagen Survey	45 24 49 12 211	\checkmark \checkmark \checkmark		\checkmark \checkmark \checkmark

Derived stellar parameter values

Complementary photometric and astrometric data

Number and fraction of RAVE database entries with a counterpart in the photometric catalogs

Catalog name Number of		% of Entries	% with quality flag			
	Entries	with Counterpart	А	В	\mathbf{C}	D
2MASS	$51,\!813$	99.97%	99.6%	0%	0%	0.4%
DENIS	40,106	77.4~%	73.7%	23.5%	2.3%	0.5%
USNO-B	$51,\!466$	99.3~%	99.2%	0.5%	0%	0.3%

Summary of proper motion sources and their average and 90% errors

SPM Flag	Catalog Name	Number of Entries	Fraction of entries	Average PM error [mas yr ⁻¹]	90% PM error [mas yr ⁻¹]
0	No proper motion	74	0.1%		
1	Tycho-2	879	1.7%	2.9	4.0
2	SSS	3,427	6.6%	23.7	31.7
3	STARNET 2.0	31,739	61.2%	3.3	4.6
4	2MASS+GSC 1.2	62	0.1%	18.7	26.1
5	UCAC2	15,047	29.0%	6.7	11.1
1-5	all with proper motion	51,154	98.7%	5.7	10.6

Closing the loop: photometric distances

Breddels, Helmi, Smith et al. in preparation

Distances determined for ~17,000 stars. For 5,000 stars distance errors are < 35%.

Closing the loop: photometric distances

Breddels, Helmi, Smith et al. in preparation

Distances determined for ~17,000 stars. For 5,000 stars distance errors are < 35%.

Breddels, Helmi, Smith et al. in preparation

Galactic rotation and metallicity vs. height

Breddels, Helmi, Smith et al. in preparation Zwitter: RAVE experience, ESO spectrosurvey, 10/03/2009 28

Figure 17. Relation between iron abundance and metallicity. The gray points mark the positions of all stars in the Soubiran & Girard (2005) catalog. The black ones are RAVE observations of stars from the GCS, with the uncalibrated values of metallicity in the top graph and the calibrated ones in the bottom one. The solid line traces the 1:1 relation, while the dashed one is the mean relation between the iron abundance and the metallicity derived from the APO observations (Equation (21)).

Figure 18. Comparison of the metallicity of the observed targets to the iron abundances from the Besançon model. The clear and the shaded histograms mark high gravity (log g > 3.0) and low gravity (log $g \leq 3.0$) objects. Panel (a) plots all RAVE spectra with $|b| \ge 25^{\circ}$. Panel (b) is a distribution of stars drawn at random from the Besançon model. The stars are more than 25° from the plane and have the same distribution of *I* apparent magnitudes as I_{DENIS} magnitudes in RAVE. Panel (c) is a histogram from the same Besançon model, using the iron abundance to metallicity relation from Equation (21) and convolved with typical RAVE observational errors.

Face-on with of RAVE stars 220 million years ago

Liza Mijović, 2005

Conclusions - what is available

www.rave-survey.org

Data	Reference	Status	W	/hat's published	
release			Radial velocities	Stellar parameter sets	Spectral tracings
Ste	inmetz et al.(2006)	published	25k		
Zwi	tter et al.(2008)	in print	50k	25k	
Siel	oert et al. (2009)	in prep.	~150k	~100k	[X/Fe]
🔹 obs	erved so far		~280k	200+ <mark>k</mark>	yes

- + lists & properties of discovered binaries, emission & peculiar stars
- automated schemes for (quentitative) classification & quality control (see poster by Paola Re Fiorentin)
- + derived papers on Galactic physics (poster by B. Anguiano, and many talks of RAVErs)

Zwitter: RAVE experience, ESO spectrosurvey, 10/03/2009 31