

TALES CALCULATED TO DRIVE YOU

E.Marchetti, J.Kolb, E.Fedrigo No. 17 10c 10 ATTENTION! This issue is going to change your whole viewpoint of MAD...

> MAD Upgrade proposal Concept & correction performance

The problem

- Main limitation of Natural Guide Star AO based instrumentation (MAD included): <u>low</u> Sky Coverage → small number of accessible targets
- Culprit: wavefront sensing
 - Balance between photon flux per sub-aperture and degree of correction
 - Noise (Read-Out Noise) in the wavefront sensor detectors
- Signal drowning in the noise ightarrow Limiting Magnitude

Pushing the MAD limiting magnitude

- Improve detection efficiency of the Shack-Hartmann wavefront sensors
 - Increase throughput → technically very difficult, limited gain margin
 - Lower detector Read-Out Noise → technically available, large gain
- EMCCDs commercially available on market: ANDOR Technology (iXon^{EM} + 860), equivalent sub-electron Read-Out Noise
- Proposal: substituting actual MAD wavefront sensor detectors system with EMCCDs from ANDOR
- Constraint: no or minimal impact for all other MAD subsystems
 - Not discussed here: upgrade schedule

EMCCDs working principle

Gain register before output amplifier: signal amplification by impact ionization

Detector cameras comparison

MAD CCD39

ANDOR iXon^{EM} + 860 (EMCCD)

Parameter	MAD	ANDOR iXon ^{EM} + 860	
Detector type	CCD39	CCD60	
Pixel size	24 μm	24 μm	
Detector format	80×80	128×128	
RON	7 e⁻/pixel	0.07 e⁻/pixel	
Dark current	100 e ⁻ /pixel/s	0.03 e ⁻ /pixel/s	
Clock Induced Charge (CIC)	-	0.2 e ⁻ /pixel/frame	
Frame rate	383 frames/s	500 frames/s	
Excess noise factor	-	sqrt(2)	
Temperature	-20°C	-85°C	

Laboratory comparison (no turbulence)

MAD CCD39

E.Marchetti et al. – MAD upgrade: concept and correction performance – MAD and beyond workshop – Garching, June 9th 2009

- Numerical end-to-end code (YAO)
- Calibrated with MAD on-sky results
- Several case studies: number of guide stars $(2 \rightarrow 3)$, magnitudes $(15 \rightarrow 17)$, FoV $(1' \rightarrow 2')$ and DIMM seeing conditions $(0.55'' \rightarrow 0.9'')$

Simulated performance (K band): m_v= 17

DIMM seeing: 0.55"

DIMM seeing: 0.70"

Simulated performance (K band): m_v= 16

DIMM seeing: 0.70"

DIMM seeing: 0.90"

Simulated performance (K band): m_v= 15

DIMM seeing: 0.90"

Caveat on wavefront sensing

Spectral type	V magnitude difference		
	at fixed Zero Point		
BOV	-0.4		
B5V	-0.3		
A0V	-0.2		
FOV	-0.1		
G0V	0.0		
KOV	+0.1		
K5V	+0.3		
MOV	+0.5		

Influence of the Moon (ph/px/frame)							
Days	d=90°	d=75°	d=60°	d=45°	d=30°	d=15°	
4	0.0	0.0	0.0	0.0	0.0	0.0	
7	0.0	0.0	0.1	0.1	0.1	0.1	
11	0.1	0.1	0.1	0.2	0.2	0.4	
15	0.2	0.2	0.3	0.5	0.7	1.0	

Correction at different wavelengths

- AO performance worsen at shorter wavelengths
- Not enough statistics to accurately calibrate Strehl ratio and FWHM values

Band	FWHM		
J	K x 2 K x 3		
Н	K x 1.5 K x 2		

CAMCAO exposure time calculation

- No internal study performed
- Rely on feedback from Science Demonstration users

Other functional upgrades

- Motorization of CAMCAO filter wheel (painful operations during SD...)
- New and/or additional CAMCAO IR filters
 - Feedback from potential users required
- Optimization of CAMCAO read-out modes
 - Improve data quality and optimize observing time
- FITS headers improvement
 - Feedback from potential users required
- New acquisition and observing templates

Acquisition time reduction (~2min) by optimization of optomechanics at wavefront sensor area (coming with detector upgrade)

... a name

