Surveying excess U-band emission onto young stars and brown dwarfs

Gregory J. Herczeg

Max Planck Institut für extraterrestriche Physik

Magnetospheric accretion

Hartmann 1998

Classification of young stars

- CTTS classification:
 - IR excess
 - U-band excess
 - Balmer line emission
 - Other lines frequently detected
- Naked (Weak-lined) T Tauri star
 - Weak lines

Methods to measure accretion

- UV (U-band) excess
 - Spectroscopic or photometric (poster by Rigliaco et al.)
 - Most direct and accurate method, when possible
- Optical veiling
 - Direct but less sensitive
- Correlations between line emission and accretion luminosity
 - Posters by Fang et al. and Antoniucci et al.
 - LMC/SMC: de Marchi et al. (2009)
- H α 10% width
 - Poster by Fedele et al. (presence of accretion)

UV Excess Measures of Accretion

$$\dot{M} = (1 - \frac{R_*}{R_{in}})^{-1} \frac{L_{acc}R_*}{GM_*} \sim 1.25 \frac{L_{acc}R_*}{GM_*}$$

- Balmer Jump:
 - Flux ratio of 3600 A to 4000 A.
- At 4000:
 - Contributions from photosphere, Paschen continuum, H- continuum
- Balmer continuum at 3646 A
 - Jump at 3700 A due to line blending

Previous U-band measures of accretion

- U-band Spectroscopy:
 - Valenti et al. (1993)
 - Gullbring et al. (1998, 2000)
- U-band photometry:
 - Based on rates from spectroscopy
 - Hartmann et al. (1998)
 - White & Ghez (2001)
 - Rigliaco et al. (poster)

Palomar/Keck Spectra

(BDs in Herczeg & Hillenbrand 2008, Herczeg et al. 2009 low-mass stars in prep)

- Low-resolution optical spectra (3200-8700 A)
 DBSP on Palomar, LRIS on Keck
- About 300 T Tauri stars, 40 field dwarfs
 - Good coverage of known Taurus members from K5-M4.5
 - MBM12, TWA, some Lupus
 - Repeated observations of 40 stars
 - Covers both WTTS and CTTS
- 900s sensitivity: U=26 (Keck), 22 mag (Palomar)

Accretion onto Brown Dwarfs

(Herczeg & Hillenbrand 2008; Herczeg et al. 2009)

- Confirms low accretion rates from other diagnostics
 - Some significant discrepancies
- Accretion rates as low as 1.6 x 10⁻¹³ M_{sun}/yr
- See poster by Reiners for accretion onto an older BD

Accretion and disks

Chromospheric Flaring

- DX Cnc/GJ 1111
- Balmer continuum emission detected from flare star
 - First such detection from a stellar chromosphere?
- The Balmer continuum/jump not a clean diagnostic
 - Our ability to detect accretion onto diskless stars is limited

Disk but no detectable accretion?

- Cleared inner hole
 - CoKu Tau/4
- CTTS/WTTS binary
 - CZ Tau: bright disk around secondary (McCabe et al. 2006)
- Variability
 - FN Tau sometimes shows no accretion
 - Little accretion on IM Lup

Variable accretion

AA Tau-like variability of IQ Tau?

- Observations separated by 2 nights
- Obscured photosphere (extinction?)
- Increased accretion rate
- No change to He I, [O I] line fluxes

Uncertainties in accretion rates

$$\dot{M} = (1 - \frac{R_*}{R_{in}})^{-1} \frac{L_{acc}R_*}{GM_*} \sim 1.25 \frac{L_{acc}R_*}{GM_*}$$

- Systematic uncertainties:
 - Bolometric correction in accretion luminosity
 - PMS tracks
 - Factor of 2 for radiative transfer (Hartigan et al. 1995)
 - Inner truncation radius (or random?)
 - Exclusion of emission lines (especially for BDs)
- Random uncertainties:
 - Extinction, Distance (Lacc, R)
- Methodological uncertainties for other, indirect measures of accretion
 - Scatter in emission line-accretion luminosity relationship (0.2-0.8 dex)
 - Uncertainties in origin of line emission

Conclusions

- The UV excess is a useful and direct probe of accretion for young low-mass stars
 - No clear separation between accreting and naked TTSs
 - Some closeted accretors may not show emission when we look
 - Chromospheric flaring can produce excess Balmer continuum emission
- Time domain is essential for understanding accretion
 - Single-band photometry (COROT, Favata et al.)
 - Low-resolution (here, but limited)
 - High resolution (AA Tau, Bouvier; Nguyen et al. (2009) in Jayawardhana's talk)