Lyα Blob as a probe of Galaxy Formation

Tom Saito (RCSCE/Ehime Univ.)

Collaborators

• SXDS team:

Y.Ono, K.Shimasaku, S.Okamura (Tokyo) M.Ouchi (OCIW),
 M.Akiyama (Tohoku), M.Yoshida (OAO), Y.Ueda (Kyoto),
 K.Sekiguchi (NAOJ) et al.

COSMOS team:

Y.Taniguchi, Y.Shioya, T.Nagao, K.Matsuoka (Ehime),
 T.Murayama (Tohoku), P.Capak, C.Scarlata (Caltech),
 O.Ilbert (IfA) et al.

• Kyoto 3DII team:

H.Sugai, A.Shimono, K.Matsubayashi, A.Akita, A.Nakajima (Kyoto),
 T.Hattori(NAOJ)

• Others:

• J.P.U.Fynbo (Dark), K.K.Nilsson (MPA), P.Møller (ESO) et al.

Contents

- Introduction: Why LABs?
- Deep sample at z~3-5
- Wide sample at z~3
- Toward ALMA & ELT

Why LABs?

-Extended in Lyα
-Faint/Compact in UV
-> LABs

LABs found with current detection limits

Projenitors of massive galaxies

Gas cooling

Initial starburst

Superwind

very young phases (age <<10⁷ yrs)

LBGs, DRGs, etc.

LAB studies in the past

- Large velocity widths: superwinds? (e.g., Bower+04; Matsuda+05)
- High detection rate in NIR: stellar-massive? (e.g., Uchimoto+08)
- High detection rate in sub-mm & MIR: dusty starburst?

(e.g., Geach+05; Colbert+07)

LAB studies in the past

• Large velocity widths: superwinds?

Most follow-up studies are made for LABs in protoclusters!

HOW ABOUT ISOLATED LABs??

(e.g., Geach+05; Collert+07)

Unbiased surveys are quite essential

Unbiased --- How?

- RARE
 - (-) Need for large survey volume
- DIFFUSE
 - (-) Need for large correcting area
- LARGE EW
 - (+)Large narrow-band excess is expected

Unbiased --- How?

• RARE

Subaru + Suprime-Cam + IA filters

- (-) Need for larg
- LARGE EW
 - (+)Large narrow expected

Contents

- Introduction: Why LABs?
- Deep sample at z~3-5
- Wide sample at z~3
- Toward ALMA & ELT

The deep sample (z~3-5)

- Field: SXDF-S (~900 arcmin²)
- Redshift coverage:
- 3.24 < z < 4.95
- 3σ limiting mags for IA:

26.5-26.8 mag (AB)

The deep sample (z~3-5)

- Field: SXDF-S (~900 arcmin²)
- Redshift coverage:
 - 3.24 < z < 4.95
- 3σ limiting mags for IA:

26.5-26.8 mag (AB)

41 Objects

Luminosity func. ~10⁻¹-10⁻² times the LAEs

No clear signatures of overdensity

Cont

Saito et al. 2006 & 2008

Follow-up studies

- VLT/VIMOS Spectroscopy:
 - ~40% have EW > 200A, no wing emission, and positive L- ΔV correlation -> cooling clouds?
- UKIDSS/UDS photometry (non-detection):
 - Stellar mass (3σ upper limit) M* ~ a few 10^9 Mo

Contents

- Introduction: Why LABs?
- Deep sample at z~3-5
- Wide sample at z~3
- Toward ALMA & ELT

The wide sample (z~3)

- Field: COSMOS field (~2 deg²: 10 pointings)
- Redshift coverage: 3.05 < z < 3.25
- 3σ limiting mags for IA:
 25.9 mag (AB)

19 Objects

IA505 band

Wide-field,

Multiwavelength analysis

Red: LABs

Green: photo-z sample

- Almost uniformly
 distributed over the sky,
 regardless of environment
- Both LABs with/without overdensity were found.

Contents

- Introduction: Why LABs?
- Deep sample at z~3-5
- Wide sample at z~3
- Toward ALMA & ELT

1. Stellar components

--obscured, absent, or very first ones?--

- "Isolated" LABs have no NIR counterparts
 --> low stellar-mass? obscured?
- Even with the stacked spectrum w/ Subaru other emission lines cannot be detected.

1. Stellar components

--obscured, absent, or very first ones?--

example: LAB @ z=3.68

(UKIDSS/UDS)

FOCAS spectrum (TS+06)

- Dust emission in submm nterparts ALMA! with great sensitivity & resolution
- \bullet Er Optical & NIR spectroscopy with ~10x higher S/N ratio

2. Diffuse components

--infalling or outflowing?--

example: LAB @z=3.68 (TS+08)

2-d spectrum

- Diffuse Ly α components cannot be detected w/ existing 8-10m telescopes
- Other emission lines (NV, CIV, HeII, etc.) are still not detected

2. Diffuse components

--infalling or outflowing?--

example: LAB @z=3.68 (TS+08)

IA image

2-d spectrum

• Diffuse Ly α components cannot be detected

w/ exi

Gas dynamics:

• Other IFU on ELTs, and/or ALMA

are still not detected

etc.)

Summary

Why do we observe LABs with ALMA & ELTs?

Why not?