The Co-Evolution of Black Holes &

COLLABORATORS

- G. Kauffmann MPA (Garching)
- P. Best ROE (Edinburgh)
- V. Wild MPA (Garching)
- J. Brinchmann CAUP (Portugal)
- S. Charlot IAP (Paris)
- C. Kaiser Southampton
- T. Reichard JHU
- C. Tremonti Arizona
- A. von der Linden MPA
- S. White MPA

The SDSS & GALEX Teams

THE CO-EVOLUTION OF GALAXIES & BLACK HOLES

Marconi et al.

BLACK HOLE MASS STRONGLY LINKED TO BULGE PROPERTIES

Marconi & Hunt

Tremaine et al.

AGN FEEDBACK CRUCIAL IN GALAXY EVOLUTION?

 Cures "over-cooling" problem at high masses? (e.g. Croton et al.)

Motivating Questions

- By what processes are the formation of stars and the growth of black holes linked in galactic bulges?
- What form does feedback from AGN take, and what is its effect on galaxy formation?
- Can we see these processes operating in the local universe (where they can be studied in detail)?

Preview

- Two primary independent modes in the local universe
- Seyfert galaxies (high accretion rates/efficiency)
- Radio galaxies (low accretion rates/low efficiency)

The Standard "Unified" Model

- View "central engine" directly in Type 1 AGN
- Central engine occulted in Type 2 AGN
- Powerful jets in Radio Galaxies

Emission-Line AGN

Classification AGN vs. SF: emission-line ratios [OIII]5007 as AGN tracer Strongest AGN line and minimal contribution from SF

The [OIII] Lines as a proxy for the bolometric luminosity

More [OIII] Propaganda...

- "Raw" [OIII] luminosity provides estimate of bolometric luminosity to within factor ~3 for typical low-z AGN
- We correct for extinction using Balmer decrement (so, we should do better than the above)

Radio Galaxies

- Match SDSS galaxies with FIRST+NVSS
- Separation into radio galaxies vs. SF based on SDSS spectroscopy
- These are low-power radio galaxies (~FR I)

Radio Jets: Energetics based on cavities inflated in the hot ICM

Part I: The Link Between Star

SDSS SPECTRA: The Bulge

THE BIMODAL SDSS GALAXY POPULATION

Characteristic scales for transition from old to young:

- $\bullet~M_{*}\sim~3~\times~10^{10}~M_{\odot}$
- Low mass galaxies are young, high mass galaxies are old
- $\mu_* \sim$ 3 \times 10⁸ ${
 m M}_{\odot}/kpc^2$
- Low density galaxies are young, high density galaxies are old
- $\bullet~C~\sim~2.6$
- Low-concentration (late-type) galaxies are young

High-concentration (early-type) galaxies are old

• Black Holes: the domain of massive, dense, high-concentration galaxies (big bulges)

Where do emission-line AGN live?

- The production of [OIII] emission by AGN is dominated by "hybrid" galaxies
- Near the boundaries between the bimodal population
- Structures/masses more like early-type galaxies
- Bulges: unusually young stellar population

Star-formation in AGN Bulges

 Probe with HST UV images of nearby AGN (Munoz Marin et al. 2007)

The GALEX Perspective

The bimodality in the galaxy population is even clearer "No Mans Land" (AKA the "Green Valley") is dominated by emission-line AGN Hybrid/Transition galaxies

Luminosity Dependence: Bulge

- As the AGN luminosity increases the stellar population in the bulge becomes younger
- And the amount of dust/cold-gas increases

Luminosity Dependence

 At higher AGN luminosities, the fraction that are post-starbursts is higher

Luminosity Dependence: Disk

 More luminous AGN occur in galaxies with younger disks

Disk vs. Bulge vs. Black Hole

- A young disk is necessary...but not sufficient for the growth of the bulge and black hole
- A young bulge is necessary and sufficient for black hole growth
- Disk gas as the long-term reservoir
- What's the transport mechanism/trigger?

Stellar Mass Profiles

- Galaxies with rapidly growing black holes and bulges have very similar stellar mass profiles to red/dead galaxies with same velocity dispersion
- The trigger does not involve a major "event"

Morphology

Usually ~normal early-type disk galaxies

How about radio galaxies?

They are the most massive galaxies

- Structural properties: giant elliptical galaxies
- Old stellar populations (normal)
- Very different from emission-line AGN

Fueling by Cooling of Hot Gas

BLACK HOLE DEMOGRAPHY

- Estimate black hole masses using the stellar velocity dispersion (AGN hosts are bulge-dominated)
- Estimate the accretion rate using the bolometric luminosity derived from [OIII]
- Accretion rate associated with radio galaxies can be neglected to first order
- Perform volume averages over SDSS

WHICH BLACK HOLES ARE GROWING?

- Mass resides in the more massive black holes
- Growth dominated by less massive ones
- Radio sources are the most massive ones

MASS-DOUBLING TIMES

- Only ~ Hubble Time for lower mass black holes
- Orders-of-magnitude longer for the most massive black holes ("dead quasars")

BLACK HOLES & BULGES

Ratio of SF/black-hole-growth: volume average over early-type galaxy population is ~1000

DOWNSIZING

 The mass-doubling timescales of the populations of black holes and bulges both increase in parallel with increasing mass

Part II: AGN Feedback

- This comes in three flavors:
- Radio sources, supernovae, and "quasar winds"

Supernovae vs. Quasar Winds

- Strong link between black hole growth (strong AGN) and star formation in the bulge
- How do we sort out the contributions of supernovae vs. the AGN in driving a wind?

Supernova-Driven Winds

- Star formation accompanies black hole growth
- Star formation drives winds (with or without an AGN)
- KE ~10^60 ergs for 10^8 solar mass BH (~0.6% Mc^2)

Does the AGN Matter?

 No excess soft X-ray emission from the wind in AGN+starburst vs. pure starburst

Does the AGN Matter?

 No evidence for higher outflow rates or velocities in Na D absorption-lines in AGN vs. starbursts Rupke et al.

THE LIVING...

- Powerful AGN need a
 black hole & cold fuel
- Also fuels star formation
- This combination now exists only in less massive bulges ("downsizing")
- Just above transition in galaxy population
- Fueling: Not major mergers
- Feedback: supernovadriven winds dominate
- Not clear that this drives an abrupt "transformation"

...AND THE DEAD

- The most massive black holes (and their host galaxies) formed at redshifts ~ 2 to 3
- "Dead quasars" simmer as radio galaxies

Radio Galaxy 3C272.1 = M84 = NGC4374 Radio/optical superposition

Copyright (c) NRAO/AUI 1999

FUELING & QUENCHING

- Fuel source: the cooling of hot gas?
- Star formation suppressed by radio source heating?
- Maintains the red sequence