

A Connection between AGN Activity and Nuclear Star Formation in Seyfert Galaxies

- R. Davies¹, R. Genzel¹, L. Tacconi¹, E. Hicks¹, F. Mueller Sánchez¹, S. Friedrich¹, A. Sternberg²
 - Max Planck Institute for Extraterrestrial Physics
 University of Tel Aviv, Israel
 - \blacktriangleright black hole mass from stellar dynamics to test reverberation masses (BLR geometry) & M_{BH} - σ relation
 - distribution & kinematics of molecular gas, and relation to obscuring material
 - extent, intensity, & history of recent star formation and relation to AGN

Adaptive Optics Observations of AGN with Keck & VLT

object		type		Мрс	resolu	tion				
Mkn 231 05189-2524		ULIRG, Sy1, QSO ULIRG, Sy1		170 170	0.176" 0.12"	145pc 100pc	ApJ 613, 78 IRAS		IRAS	
NGC 2992		Sy1			33	0.30"	48pc	Friedrich	+ in	
prep	prep NGC 3783		•	Sy1		42	0.18"	37pc		
			NC	GC 7469		Sy1		66		
	0.085"	27pc ApJ, 602, 148		., 148	NGC 1097		LINER,			
Sy1	18	0.245"	21pc			NGC 3227				
	Sy1		17	0.085"	7pc	ApJ, 646,	754	NGC		
1068	•	Sy2		14	0.085"	6рс	Mueller S	Sanchez+ ir	n prep	
Circinus		Sy2		4	0.22"	4pc	A&A, 454	1, 481		
star for	mation: Hicks+ ir		(astroph 0	704.1374)				mo	lecular	

examples of SINFONI data

CO equivalent width: stellar vs non-stellar continuum

It is possible to correct for dilution by AGN & estimate stellar continuum without knowing anything about the stellar population

STARS stellar cluster models $W_{CO6-3} \sim 4.5 \text{Å & } W_{CO2-0} \sim 12 \text{Å}$

adapted from Oliva et al. 1995

Stellar Bolometric Luminosity

Estimating stellar bolometric luminosity is simple and robust

For the stellar continuum, it is possible to estimate L_{bol} from L_{K} to within a factor of 3 without knowing anything about the star formation history

STARS stellar cluster models

Star Formation Diagnostics

Bry equivalent width

- correct Brγ for AGN contribution (e.g. NLR, jet)
 through morphology & kinematics
- ratio to stellar continuum

mass-to-light ratio

- use spatially resolved kinematics (V $_{rot}$ & $\sigma)$ to estimate dynamical mass
- correct L_{κ} for non-stellar continuum
- gives upper limit to $M/L_{\mbox{\scriptsize K}}$ for most recent star formation

radio continuum (supernova rate)

- resolved continuum with low T_B probably star formation
- correct flux for unresolved point source associated with AGN, and also for any jet contribution
- estimate supernova rate

0.06" beam source size 0.44×0.31"

Star Formation Size & Age

nuclear stellar continuum resolved in all cases

age is 10-300 Myr but low $W_{\text{Br}\gamma}$ means star formation is no longer active

Cid Fernandes+ 04: central ~200pc of 79 nearby Seyfert 2s; 1/3-1/2 have experienced significant star formation in last few hundred Myr

Star Formation occurs in Nuclear Disks

nuclear disk in NGC1068:

detected to $\sim 70 \text{ pc}$ mass $\sim 1.2 \times 10^8 \, \mathrm{M_{sun}}$ scale height $\sim 6 \, \mathrm{pc}$

Kinematic evidence (σ -drops) for nuclear disks is seen in ~30% of spiral galaxies (Ganda+06, Emsellem 07)

Are Nuclear Disks related to Nuclear Clusters?

Nuclear Clusters seen with HST in 70%-90% of all galaxies, with sizes 2-60pc (Carollo+98, Böker+02, Graham+03, Lotz+04, Grant+05, Ferrarese+07)

ages 10Myr to 10Gyr, masses 10⁵-10⁸M_{sun} (Walcher+05,06 Rossa+06)

Stellar Bolometric Luminosity

starbursts are close to being Eddington limited

e.g. M51 star clusters and Arp 220 (Scoville 03)

e.g. radiatively supported starburst models (Thompson et al. 05)

note: $500L_{sun}/M_{sun} \sim 10^{13}L_{sun}/kpc^2$ for $\Sigma = 2 \times 10^4 M_{sun}/pc^2$

What does it take for a starburst to be Eddington limited?

If gas is present at the beginning, then star formation time scale must be of order ~10Myr

this is consistent with the star forming timescales implied by the data

STARS stellar cluster models

How much higher was the stellar luminosity?

STARS illustrative stellar cluster model: for recent star formation which is no longer active, the luminosity was of order 10 times higher in the past

age yrs

exponentially decaying star formation rate, τ_{SF} =10Myr

Brγ flux drops rapidly

 L_{K} similar to L_{bol}

age [yrs]

normalisation set by $L_{bol} = 2 \times 10^9 L_{sun}$ $\frac{10^{10}}{10^{10}}$ at 100Myr

Why should the Star Formation Rate be so High?

Nuclear starbursts lie on the Kennicutt Schmidt law

$$\Sigma_{SFR} = 2.5 \times 10^{-4} \Sigma_{gas}^{1.4}$$

when SFR is time averaged and 30% of dynamical mass is attributed to gas.

SFR is high because the gas surface mass density is high. As a result the star forming efficiency is also high.

Why should the Star Formation Rate be so High?

Wang et al. 2007

'Galaxies in Zone III are undergoing suppressed star formation'

A Scenario for Star Formation around AGN

- Gas accumulates in central 100pc
- \triangleright Region cannot form stars due to high turbulence (Toomre criterion, Q=σκ/πGΣ) [Erin Hicks, short talk]
- > Eventually, the high gas density leads to a high star formation rate
- > Starburst is Eddington limited, generating a huge radiation pressure
- Because the efficiency is high, the starburst is short lived
- Starburst fades and is then dormant until gas is replenished

... but how is star formation related to the torus & the AGN?

Relation of Star Formation to Molecular Gas

(Erin Hicks, short talk)

in general, gas

- is centrally concentrated
- has high dispersion (vertically extended)
- has high column density

these are the properties of an obscuring torus

kinematics of stars & gas are similar at r<0.5"

i.e. gas & stars are mixed

Relation of Star Formation to Molecular Gas

(Erin Hicks, short talk)

in general, gas

- is centrally concentrated
- has high dispersion (vertically extended)
- has high column density

these are the properties of an obscuring torus

kinematics of stars & gas are similar at r<0.5"

i.e. gas & stars are mixed

Relation of Star Formation to Molecular Gas

(Erin Hicks, short talk)

in general, gas

- is centrally concentrated
- has high dispersion (vertically extended)
- has high column density

these are the properties of an obscuring torus

kinematics of stars & gas are similar at r<0.5"

i.e. gas & stars are mixed

Starburst - AGN connection

best estimate of time since most recent star forming episode began

Starburst - AGN connection

What role do stellar ejecta play in fuelling the black hole?

OB stars

significant mass loss, but at speeds of ~1000km/s and only for a short time;

in Galactic Centre, winds are partially responsible for stopping accretion (Ozernoy+96,97, Cuadra+06)

supernovae

~10⁶ SNe, each ejecting ~5M_{sun} at ~5000km/s;

most likely outcome is a superwind rather than accretion

SNe occur at starburst ages of 10-50Myr, and probably play a role in delaying the fuelling of the black hole

STARS illustrative stellar cluster model

Starburst - AGN connection

What role do stellar ejecta play in fuelling the black hole?

AGB stars

stars of 1-8 M_{sun} reach AGB phase after ~50Myr; winds have speeds of 10-30km/s and remain bound; mass available >0.02 M_{sun} /yr over timescale of 50-200Myr; total mass ~2×10⁷ M_{sun} over 1Gyr

STARS illustrative stellar cluster model

Summary

- adaptive optics integral field spectroscopy of AGN,
 with spatial resolution to better than 10pc
- detailed morphologies & kinematics of molecular gas and stars
- star formation:
 - > recent, intense, short lived starbursts in central few 10s of pc
 - > stars & gas are mixed starburst occurs in the molecular torus
 - > delay between starburst activity & AGN activity
 - AGN accretion probably delayed by supernovae and fuelled by winds from AGB stars