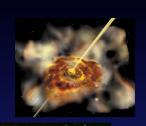

Broad-line Heavily Obscured AGN at z~2

Kate Brand
STScI
Obscured AGN conference, Seeon
June 2007

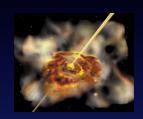
Collaborators: Michael Brown, Vandana Desai, Arjun Dey, Jim Houck, Buell Jannuzi, Emeric Le Floc'h, Tom Soifer, Dan Weedman


Outline

- Selection of an obscured AGN population at z~2-3
 - The NDWFS multi-wavelength dataset.
 - A population of R-[24]>14 sources.
- IRS spectroscopy of obscured AGN.
- Near-IR spectroscopy of obscured AGN.
- Interpretation: a large population of z~2-3 'host-obscured' AGN.
- What are the 'power-law' IRS sources?
 - Weak silicate absorption or high redshift?
 - IRS spectroscopy of X-ray-bright sources.

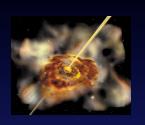
The NDWFS Bootes field

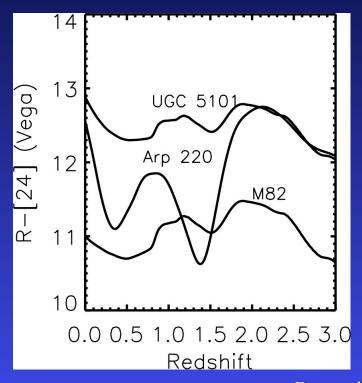
NOAO Deep Wide-Field Survey


 $9 \deg^2$

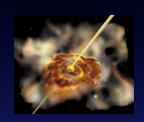
Bw, R, I, K ~ 27.1, 26.1, 25.4, 19.0 mag (Vega).

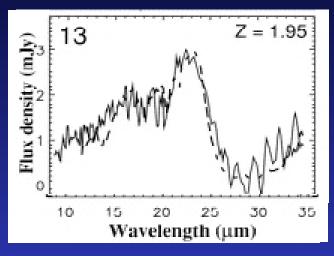
PIs: A. Dey & B. Jannuzi


Multi-wavelength observations in the Bootes field

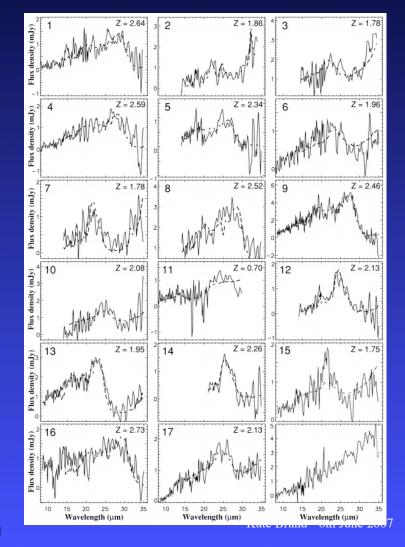

V	LA P-band	90 cm	7 sq.deg.	100mJy	100% complete; van Breugel, PI
V	LA L-band	21 cm	1 sq.deg.	15mJy	100% complete; Higdon, PI
V	LA (FIRST)	21 cm	9 sq.deg.	1mJy	100% complete; public
W	Vesterbork	21 cm	7 sq.deg.	8mJy	100% complete; Rottgering, PI
S_1	pitzer/MIPS	24,70,160um	9 sq.deg.	3.0, 30, 100mJy	100% complete; Jan 2004 GTO
S	pitzer/IRAC	3.6,4.5,5.8,8um	9 sq.deg.	6.4, 8.8, 51, 50mJy	100% complete; Eisenhardt et al.
Sı	pitzer/IRAC	3.6,4.5,5.8,8um	9 sq.deg.	3.2, 4.4, 25, 25mJy	Stern et al. large GO5 Spitzer program
N	IOAO	J, Ks	5 sq.deg.	23 mag	100% complete; Elston et al. (2005)
N	OAO	K, Ks	9 sq.deg.	19.2 mag	100% complete
N	OAO	J, H	9 sq.deg.	21 mag	40% complete
N	IOAO	B _W , R, I	9 sq.deg.	25.5-26.6 mag	100% complete
N	IOAO	U	9 sq.deg.	25 AB mag	100% complete
N	IOAO	U	1 sq.deg.	26 AB mag	100% complete
G	SALEX	FUV, NUV	1 sq.deg.	26 AB mag	100% complete, GTO
G	GALEX	FUV, NUV	9 sq.deg.	25 AB mag	in progress, GTO
Η	IST	I, H	sparse	26, 23 mag	in progress
C	Chandra	0.5-2 keV	9 sq.deg.	4.7e-15 erg/s/cm ²	100% complete
с	Thandra Thandra	2-7 keV	9 sq.deg.	1.5e-14 erg/s/cm ²	100% complete
N	IOAO/Keck	spectroscopy	sparse	24 mag	in progress (500 so far)
M	/MT/Hectosp	spectroscopy	9 sq.deg.	R~20.5 mag	completed (~20,000 redshifts)
g.	pitzer/IRS	spectroscopy	sparse		in progress

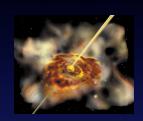
Optically faint, luminous infrared galaxies

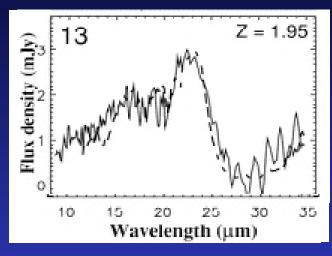

- R-[24]>14, $f_{24} > 0.8 \text{ mJy}$ (R> 24-25)
- An effective method in identifying powerful but heavily obscured AGN at z~2-3.
- \sim 200 sources / deg²
- Similar programs in FLS (Fadda et al., Yan et al., Magliocchetti et al.), SWIRE (Polletta et al.).



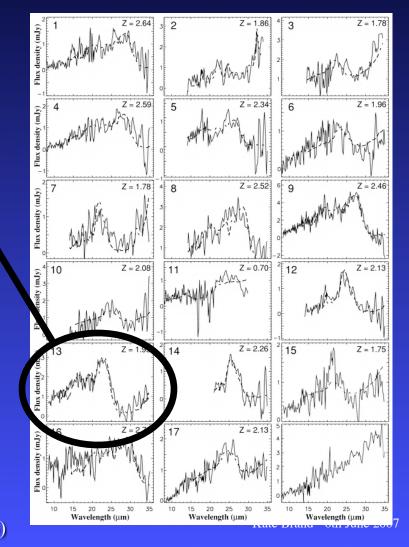
Dey et al. in prep Desai et al. in prep


IRS spectroscopy of heavily obscured AGN


- Spitzer/IRS spectra of f_{24} > 0.8 mJy sources
 - redshifts determined for $\sim 50\%$ of sources via their silicate absorption features. $z \sim 1.5$ 2.7
 - No PAH emission AGN-dominated
 - $L_{IR} \sim 10^{13} L_{\odot}$

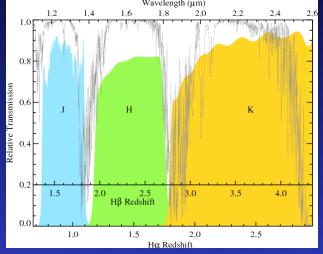

Houck et al. (2005) Weedman et al. (2006) Higdon et al. in prep. See also Yan et al. (2006)

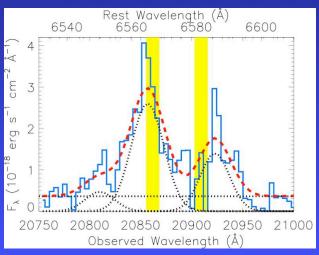
IRS spectroscopy of heavily obscured AGN



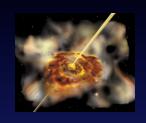
- redshifts determined for $\sim 50\%$ of sources via their silicate absorption features. $z \sim 1.5$ 2.7
- No PAH emission AGN-dominated
- $L_{IR} \sim 10^{13} L_{\odot}$

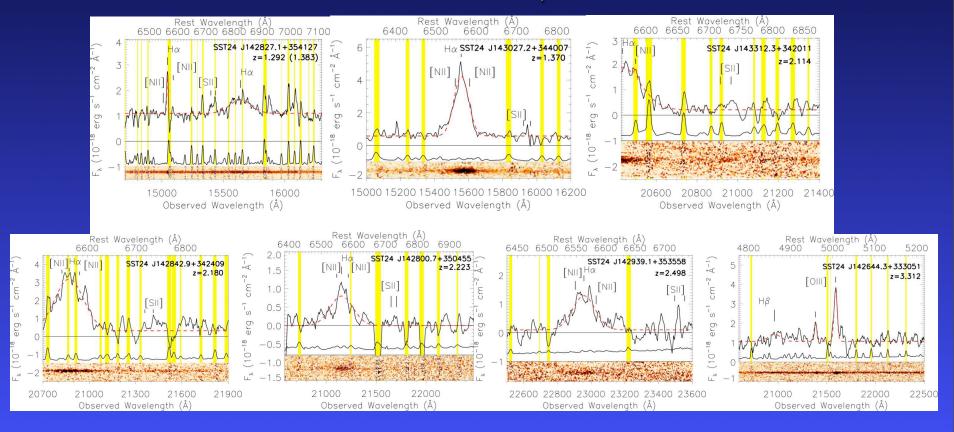
Houck et al. (2005) Weedman et al. (2006) Higdon et al. in prep. See also Yan et al. (2006)



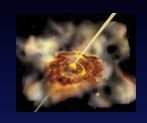


Near-IR spectroscopy of heavily obscured AGN

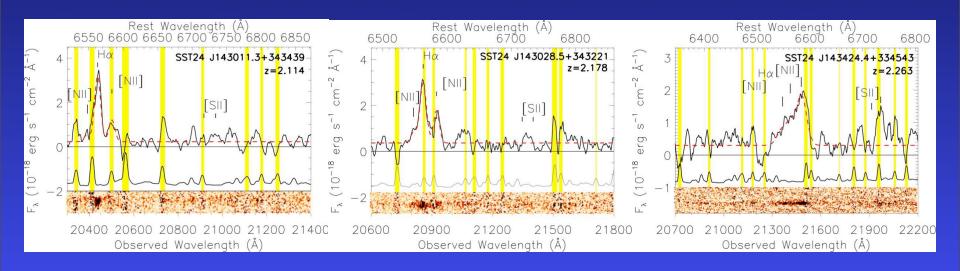

- R-[24]>14 sources with IRS spectroscopy
- Near-IR spectroscopy is painful!
 - High sky background
 - very faint sources (blind offsetting, no continuum flux or redshift information in some cases)
- Found 10 sources with H_{α} /
 [NII] and/or H_{β} /[OIII] emission lines
- Fitted Gaussian models to the 1-D spectra - simultaneous fitting.



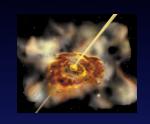
Near-IR spectroscopy - broad-line sources



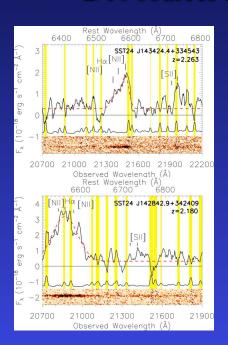
■ 7/10 sources have broad (>1900 km/s) H_{α} or H_{β} emission lines - AGN dominated.



Near-IR spectroscopy - narrow-line sources

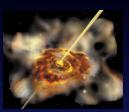


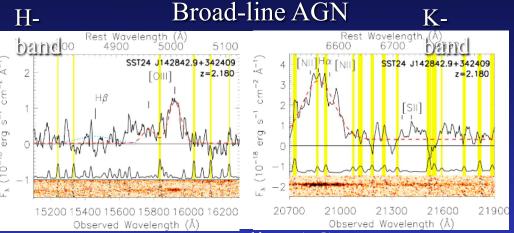
■ 3/10 sources have narrow (<700 km/s) H_{α} or H_{β} emission lines. Line diagnostics and bolometric luminosities suggest they are AGN-dominated.



Near-IR spectroscopy - radio spectral index

■ 2/10 sources are detected at 325MHz and 1.4GHz

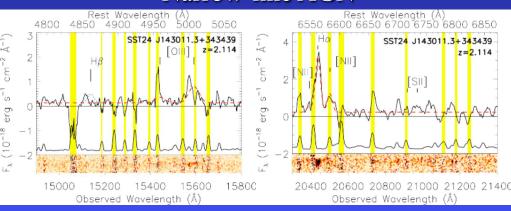

SST24 J143424.4+334543 is a narrow-line source. Steep radio spectral index ($\alpha = 1.0$).


SST24 J142842.9+342409 is a broad-line source. Shallower radio spectral index ($\alpha \sim 0.5$).

Results consistent with 'torus' model in which broad-line source is seen face on and radio jet is directly towards us whereas narrow-line source is seen side-on and radio jet is not directly towards us (cf. Best, Martinez-Sansigre).

Near-IR spectroscopy - extinction to emission-line region

Broad-line source:


 $H_{\alpha}/H_{\beta} > 15.7$

E(B-V) > 1.6

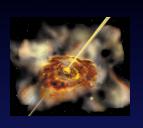
 $A(H_{\alpha}) > 3.8$

 H_{α} luminosity > 33x lower than would be if no extinction.

Narrow-line AGN

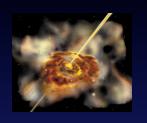
Narrow-line source:

 $H_{\alpha}/H_{\beta} > 8.5$

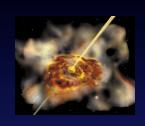

E(B-V) > 1.0

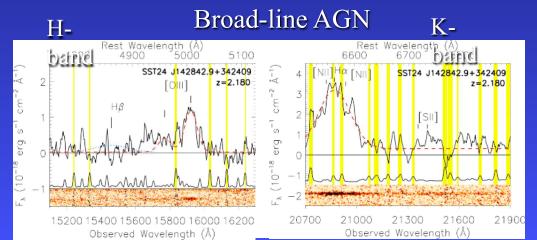
 $A(H_{\alpha}) > 2.4$

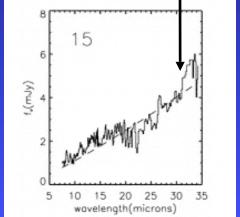
 H_{α} luminosity > 9x lower than would be if no extinction.


Implications

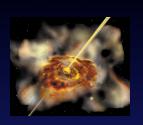
- Both broad-line and narrow-line region are extincted → some fraction of the extinction must be taking place on scales larger than that of the narrow-line region
 - → large-scale dust.
- Fraction of broad to narrow-line sources is similar to that expected from receding torus models of bolometrically luminous sources → large-scale dust.
- If hosted by large, starbursting galaxy, would expect to see this in optical → light from AGN is attenuated by dust on kpc scales.
 - (cf talks by Polletta, Martinez-Sansigre, Donley)


How common are these obscured AGN?

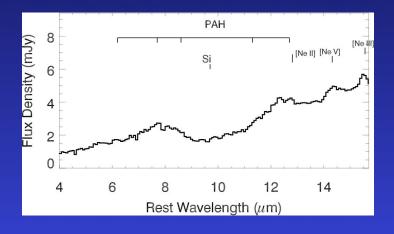

- Brown et al. (2006): 140 f₂₄> 1 mJy quasars with 17.2<R<21.7 and z>1.3 in Bootes field (from AGES spectroscopic survey).
- There are ~300 sources with R-[24]>14 and f₂₄>1mJy. Assuming these are all AGN-dominated sources at z>1.3 (as suggested from IRS and near-IR spectroscopy of a small sub-sample), space densities are ~2x that of optically bright type I AGN with similar redshifts and bolometric luminosities.


What are the featureless IRS sources?

- ~50% of R-[24]>14 sources followed up with IRS exhibit featureless mid-IR spectra.
 - -z > 2.5?
 - lack of silicate absorption feature?
- 4/10 of near-IR spectra have featureless IRS spectra.
 - in 3/4 sources, lack of silicate absorption feature explained by high z.
 - One source has no silicate absorption feature despite heavy extinction (A $(H_{\alpha}) > 3.8$)

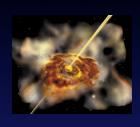


9.7um silicate absorption feature expected here.

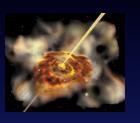


A clue from obscured sources with powerful X-ray emission

- IRS spectroscopy of 16 R-[24]>13 sources with powerful X-ray emission.
 - 10/16 sources have redshifts 0.9<z<2.6 from weak silicate absorption.
 - 6/16 sources have featureless power-law IRS spectra.
- The featureless IRS sources are also the brightest X-ray sources if at z>2.5, would have $L_x>2x10^{45}$ erg s⁻¹ (among most powerful quasars known).


Stacked IRS spectrum of 10 sources with IRS redshift

Suggests that silicate absorption feature can be weak in heavily absorbed sources - geometry of dust clouds (e.g. Levenson et al. 2007)?


Summary

- R-[24]>14 is an efficient method for identifying powerful but obscured AGN at high z.
- IRS spectroscopy of ~60 sources shows that ~50% exhibit deep silicate absorption, ~50% are featureless. Lack of PAH emission suggests they are AGN-dominated
- Near-IR spectroscopy of 10 sources shows that 7/10 are broad-line AGN and 3/10 are narrow-line AGN
- There is strong extinction along the line-of-sight to both the broad- and narrow-line regions, suggesting that much of the attenuation is contributed by dust on large scales.
- The 'power-law' IRS sources are likely to be a combination of z>2.5 sources and sources with no silicate absorption features.
- R-[24]>14 sources may be examples of 'host obscured' AGN, with space densities twice that of optically luminous type 1 AGN.

The End

