What AMBER could do for you

Interferometry micro-workshop

ESO, Santiago January 28, 2004

Martin Vannier ESO/Chile, VLTI team

R. G. Petrov, PI of AMBERF. Malbet, project scientist of AMBER

Osservatorio Astrofisico di Arcetri

AMBER Consortium

• Funding, Cooled spectrograph.

• Instrument operation software, data processing, global laboratory integration and tests.

• Warm Optics and mechanics, electronics, instrument control software.

• Funding, assistance from the technical division

AMBER: Near infrared, three-beams, dispersed fringes, single mode VLTI focal instrument

AMBER Principle

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering (single-mode optical fibers) corrects WF aberrations of order higher than 1

AMBER Principle: 2 T, dispersed fringes

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peaks with piston and differential phase
- dispersed fringes (prism, grism)

AMBER Principle: 2 T, correction of photometry

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peaks with piston and differential phase
- dispersed fringes
- photometric monitoring

AMBER Principle: 3 T instrument

• 3 Telescopes implementation with **compact** non redundant fringe coding

AMBER measurements

Measurements are integrated over a patch around the spatial frequency B_{lm}/λ . For each baseline B_{lm} (lm=12, 23, 13):

- Absolute visibility $V_{lm}(\lambda)$
- Differential visibility $V_{lm}(\lambda)/V_{lm}(\lambda_0)$
- angular size of brightness distribution
- Differential phase

$$\Phi_{lm}(\lambda) - \Phi_{lm}(\lambda_0)$$

- Phase: symetry of brightness distribution.
- if source not resolved (size < λ/B), — displacement of photocenter with λ , projected on B_{lm}
- Phase closure

$$\Phi_{123}(\lambda) = \Phi_{12} + \Phi_{23} + _{31}$$

- Autocalibrated from atmospheric and (most of) intrumental biases
- Differential phase closure $\Phi_{123}(\lambda) \Phi_{123}(\lambda_0)$
- In the future: Astrometrical differential phase (fringe tracking using off-set reference star) phase referencing imagery.

AMBER general specifications

Characteristic	Specification		Goal				
-Number of beams	3		3				
-Minimum spectral resolution	$30 < \Re < 50$						
-Medium spectral resolution in K	500 < \mathbb{R} < 1000						
-Highest spectral resolution in K				10 000 < \mathbb{R} < 15 000			
-Spectral coverage	J,H,K' from 1 to 2.3 μm		J,H,K from 1 to 2.4 μm				
-Spectral resolution in H and J	As it results from the K band equipment. Use order 2 in J.						
Instantaneous spectral coverage	Simultaneous observation of the full spectral domain for $\Re=35$						
-Absolute visibility accuracy	$3\sigma_{V}=0.01$		$\sigma_{\rm V} = 10^{-4}$				
-Differential phase stability	10 ⁻³ rad over 1 minute		10 ⁻⁴ rad over 1 minute				
-Instrument contrast	0.8		0.9				
-Instrument contrast stability	10 ⁻² over 5 minutes		10 ⁻³ over 5 minutes				
-Optical throughput (optics, fibers, spectro, detector)	2% in K (K=11)	1% in H	1% in J	5% in K	5% in H	5% in J	

Sensitivity and accuracy modes

• Fringe detection without fringe tracker:

	UT		AT	
	J	K	J	K
High sensitivity mode (50 to 100 ms)	10.5	12.2	7.7	9.3
High precision mode (10 ms frames)	8.1	9.7	5.4	6.9

• With external fringe tracker (FINITO):

• Future use of off-set reference star (PRIMA) will improve the limiting magnitude

	UT		AT	
	J	K	J	K
Resolution=35	18.7	19.4	15.7	16.3
Resolution=10000	13.3	15.1	12.3	12.0

AMBER performances in lab

- Contrast V better than 87% in K
- Accuracy on V better than 0.25% for $\Delta \lambda = 50 \text{nm}$
- Stability better than 0.8% in 5 min
- Differential phase stability better than 4.5e-3 rad in 15 min
- Throughput: a few % (within spec.)
- ? AMBER should reach K? 11 mag

From: "AMBER, the near infrared instrument of the VLTI", F. Malbet, Leiden 12-13/01/04

Errors on measurements

• "Fundamental" errors: Photon, read-out and thermal noises

$$\begin{split} &\sigma_{f\ V}^{2}(\lambda)\approx N_{\ T}^{2}\left(n(\lambda)+N_{p}\sigma_{\ RON}^{2}+n_{th}\right)/M\ V^{2}\left(\lambda\right)\ n^{2}\left(\lambda\right)\\ &\sigma_{f\ \Phi}^{2}(\lambda)\approx N_{\ T}^{2}\left(n(\lambda)+N_{p}\sigma_{\ RON}^{2}+n_{th}\right)/2\ M\ V^{2}\left(\lambda\right)\ n^{2}\left(\lambda\right) \end{split}$$

- N_T: number of telescopes
- $n(\lambda)$: number of photons per frame in channel λ
- N_p : number of pixels per channel
- n_{th} : number of background photons in channel λ
- $V(\lambda)$: source visibility x instrument visibility
- M: number of frames used for the measurement

Errors on measurements

- "Fundamental" errors: Photon, read-out and thermal noises
- Instability due to atmospheric and instrumental drifts
 - variable chromatic piston affects color-differential measurements
 - Variation in dispersion index *n*() in air
 - coupling between beam residual motion and diopters
 - fibers thermal changes
 - spectrograph deformation
 - temporal variation of detector gain
 - __.....

The differential phase can be:

- Partially calibrated using a reference star (10 mn) and internal spatial modulation (1mn)
- Auto-calibrated if observing the phase closure Φ_{12} + Φ_{23} + Φ_{31}

Observation sequences

Set-up dependant calibrations

What shall be observed?

Internal call for ideas in the AMBER consortium has produced... 87 **proposals**:

- Late-type stars
- Star formation
- Extragalactic & AGNs
- Stellar properties
- Low mass objects & exoplanets

From: "AMBER, the near infrared instrument of the VLTI", F. Malbet, Leiden 12-13/01/04

Be star (γ Cas) near emission line (e.g. Br γ) Young, massive bright, fast rotating star

Line profile

- Brightness distribution (λ)
- Velocity map

BLR in active galaxies

- Broad band visibility: BLR size if (partially) resolved.
- Differential phase with narrow channel resolution (R=1000): constraints on velocity field, possibly for very unresolved structures
- For resolved object: differential phase + differential visibility ~ quasi imagery

3C273: 2.7pc/marcsec i=60° M_{BH} =5.5×10⁸ M_{\odot}

Differential phase and Extra-Solar Planets

- Low-resolution spectroscopy and orbital parameters of hot, giant ESPs.
- Uses previous knowledge from RV survey
- Requires an extreme stability of the measurement.

Monitoring and correction of variable dispersion effects : variations of index $n(\lambda)$ in atmosphere and tunnels.

MODELED DIFFERENTIALPHASE SIGNALAND NOISE FORA "51 PEG" AT 10PC. (2UTS, B=100M, R=35, T=5H, M=5)

Key scientific programs

Topic	Maximum error on the visibility and/or the differential phase (rad)	Minimum K magnitude	Spectral Coverage	Spectral Resolution
Extra solar planets	10 ⁻⁴	5	J+H+K	35
AGN dust tori	10 ⁻²	11	K	35
QSO and AGN BLR	10 ⁻³	11	J,H,K	1000
Young Stellar Objects	10 ⁻²	7	J,H,K, lines	1000
Circumstellar material	10 ⁻²	4	J,H,K, lines	1000
Binaries	10 ⁻³	4	K	35
Stellar Structure	10 ⁻⁴	1	lines	10000

Table 1: Scientific programs and requirements used to establish and check the specifications of AMBER

Status and agenda

- Departure on 23 Jan, 2004
- Starting Assembly, Integration and Verification (AIV) on Feb 2004
- First light with siderostats before 25 March 2004?
- First light with 3 large telescopes at the end of May?
- Opening to the community on January 2005?

From: "AMBER, the near infrared instrument of the VLTI", F. Malbet, Leiden 12-13/01/04

Conclusion

- AMBER = Near infrared, three-beams, dispersed fringes, single mode VLTI focal instrument
- Will be basically used for model fitting using interferometric measurements = $f(\lambda)$. "Imaging" information in a few case
- Broad range of applications: spectral features with spatial dependency, for sources spatially resolved or not.
- Phase measurements give access to "super-resolution" ($< \lambda/B$)
- Limits on accuracy imposed by atmospheric and instrumental instability still to be assessed on-site.
- See publications and documents at :

http://www.obs-nice.fr/amber/

AMBER is coming !!