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Agenda

• History of Astrostatistics

• Role of Statistics in NVO Science

• Two new methods:

– Data Streaming quantile estimation

– Model selection

• NVO Web-based statistical interface

– (in progress)



History of Astrostatistics

• Tycho Brahe (1571-1601) - Average of

measurements to reduce errors

• Kepler (1571-1630) - Used arithmetic means to

reject models of Mars’ orbit - leading to discovery

of the elliptical shapes of planetary orbits

• Galileo Galilei -“Dialogue of Two Chief World

Systems” (1632) - LAD

• Adrien Legendre - (1805) “New methods for

determining orbits of comets.” - Determination of

few unknowns from a large number of equations

• Gauss (1777-1855) and Laplace (1749-1827) -
Least Squares Estimate

Various attempts over the last five centuries led
to the discovery of LSE, in which Gauss and
Laplace played major role.



• The leadership of astronomy in statistics
waned during the second half of 19th century,
mainly due to the rise of astrophysics (gravity,
electromagnetism and quantum mechanics).

• 20th century – Few astronomers aware of
modern statistics and few statisticians are
familiar with astronomical problems.

• Statistics turned to applications in biological
and social sciences and industry.

• Exception - Galaxy clustering studies by
Jerzy Neyman and Elizabeth Scott (1950s
and 1960s).



Recent cross-disciplinary links

Astrostatistical conferences

• Errors, Bias and Uncertainty in Astronomy
(Jaschek & Murtagh 1989)

• Statistical Challenges in Modern Astronomy
(Feigelson & Babu 1992; Babu & Feigelson
1997; Feigelson & Babu 2002)

• Applications of Time Series Analysis in
Astronomy & Meteorology (SubbaRao 1997)

Monographs

• Multivariate Data Analysis (Murtagh & Heck
1987)

• Astrostatistics (Babu & Feigelson 1996)



Some broad Astrostatistical problems

• Heteroscedastic measurement errors with known

variances are very common. Few statistical methods

for these data.

• Parameter estimation is used to link data with

astrophysical models. Data often subject to selection

bias. Models often complicated and nonlinear.

• Location of galaxies in space and photons in

detector constitute 2- or multidimensional spatial

point processes.

• Time series. Stars and AGN exhibit enormous

range of temporal behaviors.

• Censoring and truncation common in flux-limited

surveys. Survival analysis is helpful but does not

address all issues.

• Image restoration needed due to imperfect optics.

Methods include Lucy-Richardson (= EM) algorithm

and wavelet analysis.

• Bayesian methods.

NVO will present all of these problems, with the

additional problem of handling massive datasets.



Why Statistics?

• Statistics can provide a clear mathematical
foundation for NVO data analysis procedures.

• Statisticians evaluate the range of validity,
rate of convergence, confidence measures for
algorithms.

• Statistics provides a large, validated suite of
preexisting methods which can be tapped for
NVO use:

– Multivariate analysis

– Time series analysis

– Survival analysis

– Spatial analysis

– Nonlinear modeling

– Bayesian methods



Computational problems with

massive datasets provided by NVO

Very simple statistic like sample mean can be
estimated sequentially by updating the sum of all
observations and the total number of those
observations.

On the other hand, simple statistical measures
such as median have no such easily implemented
sequentially updatable representation.

Theoretically, a sample quantile can be obtained
by sorting the data and taking the appropriate
order statistic.

Sorting leads to problems with memory storage
and CPU limits.



Quantile estimation for massive data

Existing Methods

• Minimax trees (Pearl, 1981)

– Recursive tree structure where we
alternatively take the minimum and
maximum at successive levels of the tree.

Problem: Restriction on the sample size that
is dependent on the choice of parameters.

• Stochastic Approximation (Tierney, 1983,
Lambert 2001)

– Start with a pilot sample and get a
preliminary estimate; then update it
sequentially.

Problem: Accuracy is dependent on the initial
sample. It is not suitable for tail quantile
estimation as it requires several passes
through the whole dataset.



• Remedian (Rousseeuw and Bassett, 1990)

– Recursive tree structure where median of b
points at each of k levels are taken.

Problem: Data size must be bk

• Histogram-type (Hurley and Modarres, 1995)

– Involves taking an initial sample and
creating histogram-like bins and then
sequentially updating counts.

Problem: Accuracy is dependent on the initial
sample.



Streaming Quantile Estimation

We developed a low-storage sequential algorithm
for quantile estimation using estimated ranks and
weights to calculate scores which determine the
most attractive candidate data points to keep as
the estimate of the quantile.

The algorithm:

1. Sort the first m data points. Set the
estimated rank, ri, for each data point, xi,
equal to the actual rank of the initial sample
(i.e. ri = i). Set the weight, wi, for each data
point to 1 (i.e. wi = 1).

2. Determine the location of the next point in
the data set, x∗, and increment the ranks of
the points that are greater than the new
point, i.e. if xi > x∗, then ri = ri + 1.

3. Calculate an estimated rank for the new
point r∗.

4. Assign a weight w∗ = min(ri+1 − r∗, r∗ − ri),
to the new point, where xi < x∗ < xi+1.



5. Assign a score to all of the points in the array
and to the new point,

s· =
∣∣∣r· − n′p

w·

∣∣∣,
where n′ is the number of data points
observed so far.

6. If the maximum score of the points being
tracked is larger than the score for the new
point, remove the point with the largest score
from the tracking list and insert the new
point, along with its estimated rank and
weight, into the tracking list.

7. Repeat steps 2-6 until all elements of the data
set have been seen.

8. The final estimate of the pth population
quantile is the point in the final array with
the estimated rank closest to the target rank.



We extended this procedure to estimate multiple
quantiles simultaneously.

The procedure is useful in the approximation of
the unknown underlying cdf by fitting a cubic
spline through the estimates obtained by this
extension.

The density can be estimated by taking the
derivative of this spline fit.

The streaming quantile estimation method is also
useful in developing a 2-sample tests.

Multivariate extensions are currently under
development.

Sample data set: Mixture of 2 normals with
n=10,000,000.

Accurate density estimation (including tails) in
O(n) operations.
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Example: Mixture of two normals − 75% N(0,1), 25% N(10,3)
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Model selection

How to select among the many possible
alternative models?

How to select among the many alternative curve
fittings?

Does the data come from complex astrophysical
model?

Popular methods include Akaike Information
Criterion (AIC) and Bayesian Information
Criterion (BIC) – penalized likelihood.

But these methods suffer from statistical bias and
other theoretical problems.



We are developing a delete-1 jackknife type
method for model selection.

Advantages:

• Performs better than AIC and BIC even
when the samples sizes are as small as 15 or
30. Our method picks the correct model more
often than AIC or BIC.

• Does not require any new software. Use your
own software to compute likelihoods and
other parameters. Our method sits on top of
it with only few lines of code.



No. of times the correct model is picked out of 500

simulations.

Gamma with scale parameter 5

Normal Data size 15 Data size 30

s.d. AIC BIC NEW AIC BIC NEW

0.1 161 240 444 207 319 426

2 168 253 437 199 309 433

50 170 243 446 194 329 438

Weibull(5,0.5)

0.1 182 227 441 191 313 420

2 165 234 432 215 291 443

50 162 226 450 198 326 440


