eso2103pl — Komunikat naukowy

Odkryto najdalszy kwazar z potężnymi dżetami radiowymi

8 marca 2021

Przy pomocy Bardzo Dużego Teleskopu (VLT) należącego do Europejskiego Obserwatorium Południowego astronomowie odkryli i szczegółowo zbadali najdalsze jak dotąd źródło emisji radiowej. Źródłem tym jest „radiowo głośny” kwazar – jasny obiekt z potężnymi dżetami emitującymi na falach radiowych – który jest tak daleko, że światło potrzebuje 13 miliardów lat, aby dotrzeć do nas. Odkrycie może dostarczyć ważnych wskazówek pomocnych astronomom w zrozumieniu wczesnego Wszechświata.

Kwazary są bardzo jasnymi obiektami znajdującymi się w centrach niektórych galaktyk, zasilanymi przez potężne supermasywne czarne dziury. Gdy czarna dziura konsumuje otaczający gaz, uwalniana jest energia, co pozwala astronomom na dostrzeżenie takich obiektów nawet, gdy znajdują się bardzo daleko.

Nowo odkryty kwazar, nazwany P172+18, jest tak odległy, że światło od niego musi podróżować przez około 13 miliardów lat, aby dotrzeć do nas: widzimy go takim, jaki był, gdy Wszechświat miał zaledwie około 780 milionów lat. O ile odkryto odleglejsze kwazary, to w tym przypadku po raz pierwszy astronomowie byli w stanie zidentyfikować charakterystyczne oznaki dżetów radiowych w kwazarze tak wcześnie w historii Wszechświata. Zaledwie około 10% kwazarów – które astronomowie klasyfikują jako „radiowo głośne” – posiada dżety, które świecą jasno na częstotliwościach radiowych [1].

P172+18 jest zasilany przez czarną dziurę 300 milionów razy bardziej masywną niż nasze Słońce, konsumującą gaz w oszałamiającym tempie. „Czarna dziura zjada materię bardzo gwałtownie, rosnąc w masie w tempie jednym z najszybszych kiedykolwiek zaobserwowanych” wyjaśnia astronom Chiara Mazzucchelli. Jako stażystka w ESO w Chile dokonała odkrycia razem z Eduardo Bañadosem z Max Planck Institute for Astronomy w Niemczech.

Astronomowie sądzą, że istnieje związek pomiędzy gwałtownym wzrostem supermasywnych czarnych dziur, a potężnymi dżetami radiowymi dostrzeganymi w kwazarach takich jak P172+18. Uważa się, że dżety są zdolne do zaburzania gazu wokół czarnej dziury, zwiększając tempo, w którym opada na nią. Zatem badanie radiowo głośnych kwazarów może dostarczyć ważnych informacji na temat tego, w jaki sposób czarne dziury we wczesnym Wszechświecie rozrosły się do swoich supermasywnych rozmiarów tak szybko po Wielkim Wybuchu.

„To bardzo ekscytujące dla mnie po raz pierwszy odkryć ‘nową’ czarną dziurę i dostarczyć kolejną cegiełkę do zrozumienia pierwotnego Wszechświata, z którego pochodzimy, a ostatecznie również samych siebie” mówi Mazzucchelli.

P172+18 został po raz pierwszy rozpoznany jako odległy kwazar, po wcześniej identyfikacji jako źródło radiowe, w wyniku obserwacji Teleskopem Magellana w Obserwatorium Las Campanas w Chile, które przeprowadzili Bañados i Mazzucchelli. „Gdy tylko otrzymaliśmy dane i sprawdziliśmy je pobieżnie, od razu wiedzieliśmy, że odkryliśmy najdalszy radiowo głośny kwazar” mówi Bañados.

Jednak ze względu na krótki czas obserwacji zespół nie miał wystarczająco dużo danych, aby zbadać obiekt w detalach. Mnóstwo następnych obserwacji z innych teleskopów, w tym z instrumentu X-shooter na należącym do ESO teleskopie VLT, pozwoliło naukowcom zgłębić własności tego kwazara, w tym ustalić kluczowe parametry, takie jak masa czarnej dziury i tempo pożerania przez nią materii z otoczenia. Inne teleskopy, które wniosły wkład w badania to m.in. Very Large Array (VLA) należący do National Radio Astronomy Observatory oraz Teleskop Kecka w USA.  

Chociaż zespół jest podekscytowany swoim odkryciem, które ukaże się w The Astrophysical Journal, to sądzi, że radiowo głośny kwazar może być jednym z wielu jakie uda się znaleźć, być może nawet na jeszcze większych kosmologicznych odległościach. „To odkrycie napawa mnie optymizmem i wierzę, mam nadzieję że record odległości zostanie wkrótce pobity” mówi Bañados.

Obserwacje instrumentami takimi, jak ALMA, w którym ESO jest partnerem, oraz przy pomocy budowanego przez ESO przyszłego Ekstremalnie Wielkiego Teleskopu (ELT) mogą pomóc w odkryciu i dokładnym zbadaniu kolejnych tego typu obiektów z wczesnego Wszechświata.

Uwagi

[1] Fale radiowe używane w astronomii mają częstotliwości pomiędzy około 300 MHz, a 300 GHz.

Więcej informacji

Wyniki badań zaprezentowano w artykule pt. „The discovery of a highly accreting, radio-loud quasar at z=6.82”, który ukase się w The Astrophysical Journal.

Skład zespołu badawczego: Eduardo Bañados (Max-Planck-Institut für Astronomie [MPIA], Niemcy, oraz The Observatories of the Carnegie Institution for Science, USA), Chiara Mazzucchelli (European Southern Observatory, Chile), Emmanuel Momjian (National Radio Astronomy Observatory [NRAO], USA), Anna-Christina Eilers (MIT Kavli Institute for Astrophysics and Space Research, USA), Feige Wang (Steward Observatory, University of Arizona, USA), Jan-Torge Schindler (MPIA), Thomas Connor (Jet Propulsion Laboratory [JPL], California Institute of Technology, USA), Irham Taufik Andika (MPIA and International Max Planck Research School for Astronomy & Cosmic Physics at the University of Heidelberg, Niemcy), Aaron J. Barth (Department of Physics and Astronomy, University of California, Irvine, USA), Chris Carilli (NRAO and Astrophysics Group, Cavendish Laboratory, University of Cambridge, Wielka Brytania), Frederick Davies (MPIA), Roberto Decarli (INAF Bologna — Osservatorio di Astrofisica e Scienza dello Spazio, Włochy), Xiaohui Fan (Steward Observatory, University of Arizona, USA), Emanuele Paolo Farina (Max-Planck-Institut für Astrophysik, Niemcy), Joseph F. Hennawi (Department of Physics, Broida Hall, University of California, Santa Barbara, USA), Antonio Pensabene (Dipartimento di Fisica e Astronomia, Alma Mater Studiorum, Universita di Bologna, Włochy oraz INAF Bologna), Daniel Stern (JPL), Bram P. Venemans (MPIA), Lukas Wenzl (Department of Astronomy, Cornell University, USA praz MPIA) i Jinyi Yang (Steward Observatory, University of Arizona, USA).

ESO jest wiodącą międzyrządową organizacją astronomiczną w Europie i najbardziej produktywnym obserwatorium astronomicznym na świecie. Ma 16 krajów członkowskich: Austria, Belgia, Czechy, Dania, Finlandia, Francja, Hiszpania, Irlandia, Holandia, Niemcy, Polska, Portugalia, Szwajcaria, Szwecja, Wielka Brytania oraz Włochy, dodatkowo Chile jest kraje gospodarzem, a Australia (IA/FCUL) strategicznym partnerem. ESO prowadzi ambitne programy dotyczące projektowania, konstrukcji i użytkowania silnych naziemnych instrumentów obserwacyjnych, pozwalając astronomom na dokonywanie znaczących odkryć naukowych. ESO odgrywa wiodącą rolę w promowaniu i organizowaniu współpracy w badaniach astronomicznych. ESO zarządza trzema unikalnymi, światowej klasy obserwatoriami w Chile: La Silla, Paranal i Chajnantor. W Paranal ESO posiada teleskop VLT (Very Large Telescope - Bardzo Duży Teleskop), najbardziej zaawansowane na świecie astronomiczne obserwatorium w świetle widzialnym oraz dwa teleskopy do przeglądów. VISTA pracuje w podczerwieni i jest największym na świecie instrumentem do przeglądów nieba, natomiast VLT Survey Telescope to największy teleskop dedykowany przeglądom nieba wyłącznie w zakresie widzialnym. ESO jest głównym partnerem ALMA, największego istniejącego projektu astronomicznego. Z kolei na Cerro Armazones, niedaleko Paranal, ESO buduje 39-metrowy teleskop ELT (Extremely Large Telescope - Ekstremalnie Wielki Teleskop), który stanie się „największym okiem świata na niebo”.

Linki

Kontakt

Krzysztof Czart
Urania - Postępy Astronomii
Toruń, Polska
Tel.: +48 513 733 282
E-mail: eson-poland@eso.org

Chiara Mazzucchelli
European Southern Observatory
Vitacura, Chile
E-mail: Chiara.Mazzucchelli@eso.org

Eduardo Bañados
Max-Planck-Institut für Astronomie
Heidelberg, Germany
E-mail: banados@mpia.de

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel. kom.: +49 151 241 664 00
E-mail: press@eso.org

Śledź ESO w mediach społecznościowych

Jest to tłumaczenie Komunikatu prasowego ESO eso2103

O komunikacie

Komunikat nr:eso2103pl
Nazwa:P172+18
Typ:Early Universe : Galaxy : Activity : AGN : Quasar
Facility:Very Large Telescope
Instrumenty:X-shooter
Science data:2021ApJ...909...80B

Zdjęcia

Artystyczny obraz kwazara P172+18
Artystyczny obraz kwazara P172+18
Szerokie pole widzenia wokół kwazara P172+18
Szerokie pole widzenia wokół kwazara P172+18

Filmy

ESOcast 234 Light: Most distant quasar with powerful radio jets discovered
ESOcast 234 Light: Most distant quasar with powerful radio jets discovered
Po angielsku
Zooming-in on the remote quasar P172+18
Zooming-in on the remote quasar P172+18
Po angielsku