Comunicato Stampa

Adaptive Optics sharpens telescopes' sight

23 Maggio 1990

With the help of "adaptive optics," a revolutionary optical concept (eso8908), infrared astronomical images have been obtained with the ESO 3.6 m telescope at the La Silla observatory which are as sharp as they would be if the telescope were situated in space. This is the first time in astronomy that a ground-based telescope of this size has been able to directly register during long time periods stellar images with a sharpness that corresponds to the theoretically possible limit.

Producing four times sharper images than possible before, the 3.6-m telescope is now able to register images up to sixteen times fainter than before. With the new technique its observational potential in the infrared spectral region is unsurpassed by any other ground- or space-based telescope.

The observations were made by an astronomer/engineer team with a new device, the VLT Adaptive Optics Prototype System, developed in a collaboration between ESO, the Office National d'Etudes et de Recherches Aérospatiales (ONERA), LASERDOT (formerly Laboratoires de Marcoussis) and the Observatoire de Paris-Meudon in France. The principle of adaptive optics is based on a computer-controlled, small deformable mirror which counteracts the smearing effect of the atmospheric turbulence. More details may be found in the Appendix at the end of this Press Release.

Eliminating the atmospherical turbulence

During a period of good observing conditions, images were obtained in various wavebands in the infrared region of the spectrum, ranging from the J-band (at wavelength 1.2 μm) to the M-band (4.8 μm). The atmospherically induced "seeing", i.e. the diameter of stellar images registered by the telescope, was around 0.8 arcsec; the actuation of the adaptive optical system reduced this by a factor of four in the L-band (3.5 μm), to the theoretically smallest possible value, 0.22 arcsec. The picture accompanying this Press Release illustrates the dramatic improvement in image sharpness . With the adaptive optics, the telescope easily separates the components of a double star which are at a distance of only 0.38 arcseconds.

This achievement implies that the image-smearing effect of the turbulence in the atmosphere above the telescope was almost completely eliminated. It no longer has any influence on the image sharpness and for observations at this wavelength, the 3.6 m telescope therefore functioned as if it were situated in space.

The present prototype adaptive optics system is optimized for this wavelength region, but a substantial improvement was also seen at shorter wavelengths. For instance, the image diameter in the K-band (2.2 μm) was measured as 0.18 arcseconds. This is the smallest image size ever obtained continuously and in real-time at a large ground-based telescope and it is only slightly above the theoretical limit in this waveband, 0.13 arcseconds.

Future developments

Following the successful demonstration of the adaptive optics principle at the 3.6-m telescope, the team of astronomers and engineers at ESO and in France now aims at the rapid implementation of further technological refinements in a second-generation adaptive optics instrument.

By increasing the number of computer-controlled supports ("actuators") for the deformable mirror from 19 to 52 and improving the speed of computation of the mirror corrections by a factor of 2.5 or more, it is expected that it will become possible to achieve the theoretical sharpness limit at shorter wavelengths, e.g. in the H-band (1.65 μm). This would also further improve the performance at even shorter wavelengths; the present configuration already reduces the image diameters in the J-band (1.2 μm) by a factor of about three, to 0.31 arcseconds, while the theoretical limit at this waveband is 0.07 arcseconds. It is expected that the new developments will require about 18 months.

Not only does adaptive optics increase the image sharpness, it also concentrates the light better (see the picture). This is of great importance in order to increase the efficiency of the modern detectors at the telescope.

There is little doubt that adaptive optics will play an increasingly important role in ground-based astronomy. The elimination of the adverse effects of atmospheric turbulence enables a ground-based telescope to approach - in the restricted wavelength range where the Earth's atmosphere is transparent, i.e. mostly at near-infrared wavelengths - the limits of a space-based one, but at a much smaller cost. This technique is therefore entirely complementary to the Hubble Space Telescope concept.

Adaptive optics will provide a decisive advantage for the interferometric mode of ESO's 16-m Very Large Telescope (VLT), a unique feature of this project that combines several telescopes.

But are there limitations? Yes, the adaptive optics principle only works on a small sky field around a comparatively bright reference star. The light from this star gives the information that is needed to control the deformable mirror.

Appendix: what is adaptive optics?

Ever since the invention of the telescope in the early 17th century, astronomers have had to accept that the sharpness of astronomical images obtained with ground-based instruments is severely limited by a factor which is beyond their control, that is the turbulence in the Earth's atmosphere.

This turbulence is perceived by the eye as the twinkling of stars. High above the observer, mostly at altitudes between 5 and 10 kilometres, there are many small, moving cells of air, each of which produces a "sub-image" of the same star; the result is a swarm of moving sub-images. (Compare with the air above a toaster or a hot radiator.)

To a naked-eye observer, the number of sub-images which fall within the periphery of his eye pupil changes all the time. The perceived intensity of the star varies; the star twinkles.

In a telescope, the size (that is, the sharpness) of a stellar image, is equal to the area within which this swarm of sub-images moves. The greater the air turbulence, the larger is this area and the less sharp are the resulting images. Because of this effect, an increase of the size of a telescope does not improve its ability to resolve details of astronomical objects, once the aperture of the telescope exceeds 10 or 20 cm; the best achievable image sharpness, even by high-quality, large astronomical telescopes, is effectively determined by the state of the atmosphere, and is referred to as "astronomical seeing" during the exposure. For this reason, large telescopes are placed at sites where the atmospheric turbulence is as small as possible, for instance La Silla.

The technique of "adaptive optics" overcomes this natural limit. Expressed in simple terms, it enables the telescope to "catch" all of the subimages by means of a small, deformable mirror which "focuses" these images into one, sharp image. It can also be described in terms of correcting the atmospherically introduced distortions of the light wavefront from the star.

It is based on a feed-back loop, and the optical system contains a deformable mirror which can change its surface profile in a way that exactly compensates for the distortions of the light wavefront after it has passed through the atmosphere. The information about how to deform the mirror comes from a wavefront sensor which allows to measure the shape of the distorted light wavefront. It requires a very fast and powerful computer to calculate how the actuators located behind the deformable mirror have to push and pull the mirror surface.

The present prototype system has a mirror with 19 actuators. The mirror is deformed, hence the wavefront is corrected, 100 times per second.

Note that the technique of adaptive optics, as described here, is complementary to active optics, a system that allows to keep large astronomical mirrors in optimal shape when gravity, wind and heat distort them, and which has been so successfully implemented at the ESO New Technology Telescope (see eso8903, eso8904 and eso9003).

Note

[1] In B/W; also available in false-colour on request.

Ulteriori Informazioni

Members: Gerard Rousset (ONERA); Fritz Merkle and Georg Gehring (ESO); Francois Rigaut, Pierre Kern and Pierre Gigan (Observatoire de Paris); Corinne Boyer (LASERDOT).

Contatti

Richard West
ESO
Garching, Germany
Tel.: +49 89 3200 6276
E-mail: information@eso.org

Connect with ESO on social media

Sul Comunicato Stampa

Comunicato Stampa N":eso9006
Legacy ID:PR 05/90
Nome:Adaptive Optics
Tipo:Unspecified : Technology : Observatory : Instrument
Facility:ESO 3.6-metre telescope

Immagini

Adaptive optics at the ESO 3.6 m telescope
Adaptive optics at the ESO 3.6 m telescope

Mandateci i vostri commenti!
Iscrivetevi per ricevere le notizie dell'ESO nella vostra lingua
Accelerated by CDN77
Termini & Condizioni
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.