Nota de prensa

Measuring Cosmic Distances with Stellar Heart Beats

VLTI Watches the Changing Size of Bright Southern Cepheids

29 de Octubre de 2004

Taking advantage of the very high spatial resolution provided by the Very Large Telescope Interferometer, a team of French and Swiss astronomers [1] has measured directly the change in angular diameter of four southern Cepheid variable stars over their pulsation cycle. When combined with spectroscopic radial velocity measurements, this allowed the astronomers to measure very accurately the distances of these stars in a quasi-geometrical way, and to calibrate the zero-point of the Cepheid Period-Luminosity empirical law. These observations constitute a fundamental step towards an independent verification of the extragalactic distance scale by interferometry.

Cepheids and the cosmic distance ladder

It is very difficult to measure the distance to an astronomical object. In fact, this is one of the greatest challenges facing astronomers. There is indeed no accurate, direct way to determine the distance to galaxies beyond the Milky Way: astronomers first determine the distance to nearby stars in our galaxy as accurately as possible and then use a series of other techniques that reach progressively further into space to estimate distances to more distant systems. This process is often referred as the "cosmic distance ladder".

Over the years, a number of different distance estimators have been found. One of these is a particular class of stars known as Cepheid variables. They are used as one of the first "steps" on this cosmic distance ladder.

Cepheids are rare and very luminous stars whose luminosity varies in a very regular way. They are named after the star Delta Cephei in the constellation of Cepheus, the first known variable star of this particular type and bright enough to be easily seen with the unaided eye.

In 1912, American astronomer Henrietta Leavitt observed 20 variable stars of the Cepheid-type in the Small Magellanic Cloud (SMC), one of the closest galaxies to the Milky Way. For all purposes, these stars are all at the same distance (the size of the SMC is negligible compared to its much larger distance from us). Apparently brighter stars in this group are thus also intrinsically brighter (more luminous). Henrietta Leavitt discovered a basic relation between the intrinsic brightness and the pulsation period of Cepheid variable stars in the SMC and showed that intrinsically brighter Cepheids have longer periods.

This relation is now known as the "Period-Luminosity relation" and is an important way to derive the distance to stars of this type. By measuring the period of a Cepheid star, its intrinsic brightness can be deduced and from the observed apparent brightness, the distance may then be calculated. In this way, Cepheid stars are used by astronomers as one of the "standard candles" in the Universe. They act either as distance indicators themselves or are used to calibrate other distance indicators.

The Cepheid stars have taken on an even more important role since the Hubble Space Telescope Key Project on the extragalactic distance scale relies completely on them for the calibration of distance indicators to reach cosmologically large distances. In other words, if the calibration of the Cepheid Period-Luminosity relation were wrong, the entire extragalactic distance scale and with it, the rate of cosmic expansion and the related acceleration, as well as the estimated age of the Universe, would also be off.

A main problem is thus to calibrate as accurately as possible the Period-Luminosity relation for nearby Cepheids. This requires measuring their distances with the utmost precision, a truly daunting task. And this is where interferometry now enters the picture.

The Baade-Wesselink method

Independent determinations of the distance of variable stars make use of the so-called Baade-Wesselink method, named after astronomers Walter Baade (1893 - 1960) and Adriaan Wesselink (1909 - 1995). With this classical method, the variation of the angular diameter of a Cepheid variable star is inferred from the measured changes in brightness (by means of model atmosphere calculations) as it pulsates. Spectroscopy is then used to measure the corresponding radial velocity variations, hence providing the linear distance over which the star's outer layers have moved. By dividing the angular and linear measures, the distance to the star is obtained.

This sounds straightforward. However, it would obviously be much better to measure the variation of the radius directly and not to rely on model atmosphere calculations. But here the main problem is that, despite their apparent brightness, all Cepheids are situated at large distances. Indeed, the closest Cepheid star (excluding the peculiar star Polaris), Delta Cephei, is more than 800 light-years away. Even the largest Cepheids in the sky subtend an angle of only 0.003 arcsec. To observe this is similar to view a two-storey house on the Moon. And what astronomers want to do is to measure the change of the stars' sizes, amounting to only a fraction of this!

Such an observing feat is only possible with long-baseline interferometry. Also on this front, the VLT Interferometer is now opening a new field of observational astrophysics.

Three VLTI baselines

Some time ago, an undaunted team of French and Swiss astronomers [1] started a major research programme aimed at measuring the distance to several Cepheids by means of the above outlined Baade-Wesselink interferometric method. For these observations they combined sets of two beams - one set from the two VLTI Test Siderostats with 0.35m aperture and the other set from two Unit Telescopes (Antu and Melipal; 8.2m mirrors) - with the VINCI (VLT Interferometer Commissioning Instrument) facility. Three VLTI baselines were used for this programme with, respectively, 66, 140 and 102.5m ground length. The second image shows the respective positions on the VLTI platform. The observations were made in the near-infrared K-band.

A total of 69 individual angular diameter measurements were obtained with the VLTI, over more than 100 hours of total telescope time, distributed over 68 nights; the largest angular diameter measured was 0.0032 arcsec (L Car at maximum).

Seven Cepheids observable from Paranal Observatory were selected for this programme: X and W Sagittarii, Eta Aquilae, Beta Doradus, Zeta Gemini, Y Ophiocus and L Carinae. Their periods range from 7 to 35.5 days, a fairly wide interval and an important advantage to properly calibrate the Period-Luminosity relation.

The distances to four of the stars (Eta Aql, W Sgr, Beta Dor and L Car) were derived using the interferometric Baade-Wesselink method, as their pulsation is detected by the VLTI. The third image shows the angular diameter measurements and the fitted radius curve of L Car (P = 35.5 days); this measures its distance with a relative precision better than 5%.

For the remaining three objects of the sample (X Sgr, Zeta Gem and Y Oph), a hybrid method was applied to derive their distances, based on their average angular diameter and pre-existing estimations of their linear diameters.

The new calibration

Combining the distances measured by this programme with the apparent magnitudes of the stars, the astronomers determined the absolute magnitude (intrinsic brightness) of these stars and arrived at a very precise calibration of the zero-point of the Period-Luminosity relation (assuming the slope from previous work).

It turned out that this new and independently derived value of the zero-point is exactly the same as the one obtained during previous work based on a large number of relatively low-precision Cepheid distance measurements by the ESA Hipparcos astrometric satellite. The agreement between these two independent, geometrical calibrations is remarkable and greatly increases the confidence in the cosmic distance scale now in use.

Prospects with AMBER

With 1.8m Auxiliary Telescopes soon to be ready on the VLTI platform, the astronomers will be able to observe many more Cepheids with a precision at least as good as the present high-precision VINCI observations of L Car. In addition, the future AMBER instrument will extend the VLTI capabilities toward shorter wavelengths (J and H bands), providing even higher spatial resolution than what is now possible with VINCI (K band).

The combined effect of these two improvements will be to extend significantly the accessible sample of Cepheids. It is expected that the distances to more than 30 Cepheids will then be measurable with a precision better than 5%. This will provide a high precision calibration of both the reference point (down to ±0.01 mag) and the slope of the Galactic Cepheid Period-Luminosity.

Notas

[1] The team consists of Pierre Kervella and Vincent Coudé du Foresto at the Paris Observatory in France, David Bersier of the Space Telescope Science Institute (USA), Nicolas Nardetto and Denis Mourard (Observatoire de la Côte d'Azur, France), and Pascal Fouqué (Observatoire Midi-Pyré né es, France).

Información adicional

The information contained in this press release is based on a series of three research articles which are being published by the European research journal "Astronomy & Astrophysics" by P. Kervella and collaborators (Paper I : 2004, A&A, 416, 941, Paper II : 2004, A&A, 423, 327 and Paper III : in press). The present press release is published exactly three years after the first observations with two 8.2-m VLT Unit Telescopes and the VLTI with VINCI were achieved.

Contactos

Pierre Kervella
Observatoire de Paris-Meudon
Paris, France
Teléfono: +33 1 45 07 79 66
Correo electrónico: Pierre.Kervella@obspm.fr

Denis Mourard
Observatoire de la Côte d'Azur
Côte d'Azur, France
Teléfono: +33 4 93 40 54 92
Correo electrónico: enis.Mourard@obs-azur.fr

Connect with ESO on social media

Acerca de la nota de prensa

Nota de prensa No.:eso0432
Legacy ID:PR 25/04
Nombre:Cepheus
Tipo:Unspecified : Star : Type : Variable
Facility:Very Large Telescope
Instruments:VINCI
Science data:2004A&A...428..587K
2004A&A...423..327K
2004A&A...416..941K

Imágenes

Observation techniques of the Baade-Wesselink method
Observation techniques of the Baade-Wesselink method
Paranal platform and VLTI baselines used
Paranal platform and VLTI baselines used
Pulsation of the cepheid variable L Car
Pulsation of the cepheid variable L Car
Period-luminosity relation for cepheids
Period-luminosity relation for cepheids

Envíenos sus comentarios
Suscríbete para recibir noticias de ESO en tu idioma
Acelerado por CDN77
Términos y Condiciones
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.