Press Release
Controlled by Distant Explosions
VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery
28 March 2007
A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars.
At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit.
Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT.
"With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine."
The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow, let alone with an instrument such as UVES, which is capable of splitting the afterglow light with uttermost precision. What is more, this amazing record was broken less than two months later by the same team. On 7 June 2006, the Rapid-Response Mode triggered UVES observations of the afterglow of an even more distant gamma-ray source a mere 7.5 minutes after its detection by the Swift satellite.
Gamma-ray bursts are the most intense explosions in the Universe. They are also very brief. They randomly occur in galaxies in the distant Universe and, after the energetic gamma-ray emission has ceased, they radiate an afterglow flux at longer wavelengths (i.e. lower energies). They are classified as long and short bursts according to their duration and burst energetics, but hybrid bursts have also been discovered. The scientific community agrees that gamma-ray bursts are associated with the formation of black holes, but the exact nature of the bursts remains enigmatic.
Because a gamma-ray burst typically occurs at very large distances, its optical afterglow is faint. In addition, it fades very rapidly: in only a few hours the optical afterglow brightness can fade by as much as a factor of 500. This makes detailed spectral analysis possible only for a few hours after the gamma-ray detection, even with large telescopes. During the first minutes and hours after the explosion, there is also the important opportunity to observe time-dependent phenomena related to the influence of the explosion on its surroundings. The technical challenge therefore consists of obtaining high-resolution spectroscopy with 8-10 m class telescopes as quickly as possible.
"The afterglow spectra provide a wealth of information about the composition of the interstellar medium of the galaxy in which the star exploded. Some of us even hoped to characterize the gas in the vicinity of the explosion," said team member Cédric Ledoux (ESO).
The Rapid Response Mode UVES observations of 17 April 2006 allowed the astronomers to discover variable spectral features associated with a huge gas cloud in the host galaxy of the gamma-ray burst. The cloud was found to be neutral but excited by the radiation from the UV afterglow light.
From detailed modelling of these observations, the astronomers were able - for the first time - to not only pinpoint the physical mechanism responsible for the excitation of the atoms, but also determine the distance of the cloud to the GRB. This distance was found to be 5,500 light-years, which is much further out than was previously thought. Either this is a special case, or the common picture that the features seen in optical spectra originate very close to the explosion has to be revised. As a comparison, this distance of 5,500 light-years is more than one fifth of that between the Sun and the centre of our Galaxy.
"All the material in this region of space must have been ionised, that is, the atoms have been stripped of most if not all of their electrons," said co-author Alain Smette (ESO). "Were there any life in this region of the Universe, it would most probably have been eradicated."
"With the Rapid-Response Mode of the VLT, we are really looking at gamma-ray bursts as quickly as possible," said team member Andreas Jaunsen from the University of Oslo (Norway). "This is crucial if we are to unravel the mysteries of these gigantic explosions and their links with black holes!"
More information
The two gamma-ray bursts were discovered with the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful cosmic explosions.
Preliminary reports on these observations have been presented in GCN GRB Observation Reports 4974 and 5237. A paper is also in press in the journal Astronomy & Astrophysics ("Rapid-Response Mode VLT/UVES spectroscopy of GRB 060418 - Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations" by P. M. Vreeswijk et al.). DOI: 10.1051/0004-6361:20066780
The team is composed of Paul Vreeswijk, Cédric Ledoux, Alain Smette, Andreas Kaufer and Palle Møller (ESO), Sara Ellison (University of Victoria, Canada), Andreas Jaunsen (University of Oslo, Norway), Morten Andersen (AIP, Potsdam, Germany), Andrew Fruchter (STScI, Baltimore, USA), Johan Fynbo and Jens Hjorth (Dark Cosmology Centre, Copenhagen, Denmark), Patrick Petitjean (IAP, Paris, France), Sandra Savaglio (MPE, Garching, Germany), and Ralph Wijers (Astronomical Institute, University of Amsterdam, The Netherlands). Paul Vreeswijk was at the time of this study also associated with the Universidad de Chile, Santiago.
Contacts
Paul Vreeswijk
ESO
Chile
Tel: +56 2 463 3000
Email: pvreeswi@eso.org
Cédric Ledoux
ESO
Chile
Email: cledoux@eso.org
Alain Smette
ESO
Chile
Email: asmette@eso.org
Andreas Jaunsen
Institute of Astrophysic, University of Oslos
Oslo, Norway
Tel: +47 22 85 70 22
Email: ajaunsen@astro.uio.no
Sara L. Ellison
University of Victoria
Canada
Tel: +1 250 721 7737
Email: sarae@uvic.ca
About the Release
Release No.: | eso0717 |
Legacy ID: | PR 17/07 |
Name: | VLT Control Room |
Type: | Unspecified : Technology : Observatory : Facility |
Facility: | NASA/ASI/PPARC Swift satellite, Very Large Telescope |
Instruments: | UVES |
Science data: | 2007A&A...468...83V |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.