Comunicato Stampa
La prima verifica della relatività generale di Einstein nei pressi di un buco nero supermassiccio
È il culmine di 26 anni di osservazioni dell'ESO nel cuore della Via Lattea
26 Luglio 2018
Alcune osservazioni effettuate con il VLT (Very Large Telescope) dell'ESO hanno rivelato per la prima volta gli effetti previsti dalla relatività generale di Einstein sul moto di una stella che passa nel campo gravitazionale estremo vicino al buco nero supermassiccio nel cuore della Via Lattea. Questo risultato, atteso da lungo tempo, rappresenta il culmine di una campagna osservativa, durata 26 anni anni, con i telescopi dell'ESO in Cile.
Oscurato da spesse nubi di polvere opaca, il buco nero supermassiccio più vicino alla Terra si trova a circa 26 000 anni luce da noi, nel cuore della Via Lattea. Questo mostro gravitazionale, con una massa di quattro milioni di volte quella del Sole, è circondato da un piccolo gruppo di stelle che gli orbitano intorno ad alta velocità. Questo ambiente estremo - il campo gravitazionale più forte nella nostra Galassia - è il luogo ideale per esplorare la fisica gravitazionale e in particolare per verificare la teoria della relatività generale di Einstein.
Nuove osservazioni nella banda dell'infrarosso, ottenute con gli strumenti di squisita sensibilità GRAVITY [1], SINFONI e NACO installati sul VLT (Very Large Telescope) dell'ESO hanno consentito finalmente di seguire una di queste stelle, nota come S2, mentre passava molto vicino al buco nero, nel maggio 2018. Nel punto piu vicino questa stella si trovava a una distanza di meno di 20 miliardi di chilometri dal buco nero e si muoveva a una velocità superiore ai 25 milioni di chilometri all'ora - quasi il tre percento della velocità della luce [2].
L'equipe ha confrontato le misure di posizione e velocità ottenute rispettivamente da GRAVITY e da SINIFONI, insieme alla precedenti osservazioni di S2 ottenute da altri strumenti, con le previsioni della gravità newtoniana, della relatività generale e di altre teorie della gravità. I nuovi risultati sono inconsistenti con le previsioni della meccanica newtoniana, mentre sono in eccellente accordo con le previsioni della relatività generale.
Queste misure molto precise sono state realizzate da un'equipe internazionale con a capo Reinhard Genzel dell'MPE (Max Planck Institute for Extraterrestrial Physics) di Garching (Germania) insieme a collaboratori sparsi nel mondo: dall'Osservatorio di Parigi - PSL, all'Università di Grenoble Alpes, al CNRS, al Max Planck Institute for Astronomy, all'Università di Colonia, all'istituto portoghese CENTRA - Centro de Astrofisica e Gravitação e infine all'ESO. Queste osservazioni sono il culmine di una serie di misure sempre più precise del centro della Via Lattea ottenute con gli strumenti dell'ESO [3].
"È la seconda volta che osserviamo il passaggio ravvicinato di S2 intorno al buco nero al centro della nostra Galassia. Ma questa volta, grazie all'avanzamento tecnologico degli strumenti disponibili, siamo stati in grado di osservare la stella con una risoluzione senza precedenti," spiega Genzel. "Ci siamo preparati intensamente a questo evento, per molti anni, poichè volevamo sfruttare al massimo questa opportunità unica di osservare gli effetti della relatività generale".
Le nuove misure rivelano chiaramente un effetto noto come redshift gravitazionale. La luce della stella viene allungata a lunghezze d'onda maggiori dal campo gravitazionale intensissimo del buco nero. E i cambiamenti osservati nella lunghezza d'onda della luce di S2 sono in perfetto accordo con quanto previsto dalla teoria della relatività generale di Einstein. È la prima volta che questa deviazione dalle previsioni della teoria di gravità newtoniama, più semplice, è stata osservata nel moto di una stella intorno a un buco nero supermassiccio.
L'equipe ha usato SINFONI per misurare la velocità di S2 in avvicinamento e in allontanamento dalla Terra, lo strumento GRAVITY sull'interferometro del VLT (VLTI) per misure estremamente precise della posizione continuamente mutevole di S2 per definire la forma esatta dell'orbita. GRAVITY crea immagini così nitide che si può evidenziare lo spostamento della stella da una notte all'altra, mentre passa vicino al buco nero - a 26 000 anni luce da Terra.
"La nostra prima osservazione di S2 con GRAVITY, circa due anni fa, ha mostrato subito che questo sarebbe stato un laboratorio ideale per i buchi neri," aggiunge Frank Eisenhauer (MPE), Ricercatore Responsabile di GRAVITY e dello spettrografo SINFONI. "Durante il passaggio ravvicinato avremmo persino potuto rivelare il debole bagliore intorno al buco nero nella maggior parte delle immagini, il che ci avrebbe permesso di seguire con precisione il cammino della stella nella sua orbita, per giungere alla fine alla detezione del redshfit gravitazionale nello spettro di S2."
Più di un centinaio di anni dopo la pubblicazione dell'articolo che descrive le equazioni della relatività generale, Einstein ha di nuovo ragione - in un laboratorio estremo come mai avrebbe potuto immaginare!
Françoise Delplancke, a capo del Dipartimento di Ingegneria dei Sistemi dell'ESO, spiega l'importanza delle osservazioni: "Nel Sistema Solare possiamo mettere alla prova le leggi fisiche in questo momento e sotto particolari circostanze. È perciò fondamentale in astronomia verificare che queste leggi siano sempre valide laddove i campi gravitazionali sono molto più intensi."
Le osservazioni continuano e si prevede di rivelare presto un altro effetto relativistico - una piccola rotazione dell'orbita della stella, nota come precessione di Schwarzschild - a mano a mano che S2 si allontana dal buco nero.
Xavier Barcons, Direttore Generale dell'ESO, conclude: "L'ESO ha lavorato in collaborazione con Reinhard Genzel e il suo gruppo e altri colleghi negli Stati Membri dell'ESO per più di un quarto di secolo. È stato un compito arduo sviluppare gli strumenti unici e potenti necessari per effettuare queste misure delicatissime e per installarli al VLT in Paranal. La scoperta annunciata oggi è il risultato entusiasmante di uno straordinario sodalizio".
Note
[1] GRAVITY è stato sviluppato da una collaborazione costituita dall'Istituto Max Planck per la fisica extraterrestre (Germania), dall'osservatorio LESIA di Parigi-PSL / CNRS / Sorbonne Université / Univ. Paris Diderot e IPAG dell'Université Grenoble Alpes / CNRS (Francia), Max Planck Institute for Astronomy (Germania), Università di Colonia (Germania), CENTRA-Centro de Astrofisica e Gravitação (Portogallo) ed ESO.
[2] S2 orbita attorno al buco nero ogni 16 anni in un'orbita molto eccentrica che la porta entro venti miliardi di chilometri - 120 volte la distanza tra la Terra e il Sole, o circa quattro volte la distanza dal Sole a Nettuno - nel suo approccio più vicino al buco nero. Questa distanza corrisponde a circa 1500 volte il raggio di Schwarzschild del buco nero stesso.
[3] Le osservazioni del centro della Via Lattea devono essere effettuate a lunghezze d'onda più lunghe (in questo caso in luce infrarossa) poiché le nubi di polvere tra la Terra e la regione centrale assorbono fortemente la luce visibile.
Ulteriori Informazioni
Questo risultato è stato pubblicato nell'articolo intitolato “Detection of the Gravitational Redshift in the Orbit of the Star S2 near the Galactic Centre Massive Black Hole“, da parte della Collaborazione GRAVITY, pubblicato dalla rivista Astronomy & Astrophysics il 26 luglio 2018.
La Collaborazione GRAVITY è composta da: R. Abuter (ESO, Garching, Germania), A. Amorim (Universidade de Lisboa, Lisbon, Portogallo), N. Anugu (Universidade do Porto, Porto, Portogallo), M. Bauböck (Max Planck Institute for Extraterrestrial Physics, Garching, Germania [MPE]), M. Benisty (Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, Francia [IPAG]), J.P. Berger (IPAG; ESO, Garching, Germania), N. Blind (Observatoire de Genève, Université de Genève, Versoix, Svizzera), H. Bonnet (ESO, Garching, Germania), W. Brandner (Max Planck Institute for Astronomy, Heidelberg, Germania [MPIA]), A. Buron (MPE), C. Collin (LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Meudon, Francia [LESIA]), F. Chapron (LESIA), Y. Clénet (LESIA), V. Coudé du Foresto (LESIA), P. T. de Zeeuw (Sterrewacht Leiden, Leiden University, Leiden, Paesi Bassi; MPE), C. Deen (MPE), F. Delplancke-Ströbele (ESO, Garching, Germania), R. Dembet (ESO, Garching, Germania; LESIA), J. Dexter (MPE), G. Duvert (IPAG), A. Eckart (University of Cologne, Cologne, Germania; Max Planck Institute for Radio Astronomy, Bonn, Germania), F. Eisenhauer (MPE), G. Finger (ESO, Garching, Germania), N.M. Förster Schreiber (MPE), P. Fédou (LESIA), P. Garcia (Universidade do Porto, Porto, Portogallo; Universidade de Lisboa Lisboa, Portogallo), R. Garcia Lopez (MPIA), F. Gao (MPE), E. Gendron (LESIA), R. Genzel (MPE; University of California, Berkeley, California, USA), S. Gillessen (MPE), P. Gordo (Universidade de Lisboa, Lisboa, Portogallo), M. Habibi (MPE), X. Haubois (ESO, Santiago, Cile), M. Haug (ESO, Garching, Germania), F. Haußmann (MPE), Th. Henning (MPIA), S. Hippler (MPIA), M. Horrobin (University of Cologne, Cologne, Germania), Z. Hubert (LESIA; MPIA), N. Hubin (ESO, Garching, Germania), A. Jimenez Rosales (MPE), L. Jochum (ESO, Garching, Germania), L. Jocou (IPAG), A. Kaufer (ESO, Santiago, Cile), S. Kellner (Max Planck Institute for Radio Astronomy, Bonn, Germania), S. Kendrew (MPIA), P. Kervella (LESIA; MPIA), Y. Kok (MPE), M. Kulas (MPIA), S. Lacour (LESIA), V. Lapeyrère (LESIA), B. Lazareff (IPAG), J.-B. Le Bouquin (IPAG), P. Léna (LESIA), M. Lippa (MPE), R. Lenzen (MPIA), A. Mérand (ESO, Garching, Germania), E. Müller (ESO, Garching, Germania; MPIA), U. Neumann (MPIA), T. Ott (MPE), L. Palanca (ESO, Santiago, Cile), T. Paumard (LESIA), L. Pasquini (ESO, Garching, Germania), K. Perraut (IPAG), G. Perrin (LESIA), O. Pfuhl (MPE), P.M. Plewa (MPE), S. Rabien (MPE), A. Ramírez (ESO, Chile), J. Ramos (MPIA), C. Rau (MPE), G. Rodríguez-Coira (LESIA), R.-R. Rohloff (MPIA), G. Rousset (LESIA), J. Sanchez-Bermudez (ESO, Santiago, Cile; MPIA), S. Scheithauer (MPIA), M. Schöller (ESO, Garching, Germania), N. Schuler (ESO, Santiago, Cile), J. Spyromilio (ESO, Garching, Germania), O. Straub (LESIA), C. Straubmeier (University of Cologne, Cologne, Germania), E. Sturm (MPE), L.J. Tacconi (MPE), K.R.W. Tristram (ESO, Santiago, Cile), F. Vincent (LESIA), S. von Fellenberg (MPE), I. Wank (University of Cologne, Cologne, Germania), I. Waisberg (MPE), F. Widmann (MPE), E. Wieprecht (MPE), M. Wiest (University of Cologne, Cologne, Germania), E. Wiezorrek (MPE), J. Woillez (ESO, Garching, Germania), S. Yazici (MPE; University of Cologne, Cologne, Germania), D. Ziegler (LESIA) and G. Zins (ESO, Santiago, Cile).
L'ESO (European Southern Observatory, o Osservatorio Australe Europeo) è la principale organizzazione intergovernativa di Astronomia in Europa e di gran lunga l'osservatorio astronomico più produttivo al mondo. È sostenuto da 15 paesi: Austria, Belgio, Danimarca, Finlandia, Francia, Germania, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia, e Svizzera, oltre al paese che ospita l'ESO, il Cile e l'Australia come partner strategico. L'ESO svolge un ambizioso programma che si concentra sulla progettazione, costruzione e gestione di potenti strumenti astronomici da terra che consentano agli astronomi di realizzare importanti scoperte scientifiche. L'ESO ha anche un ruolo di punta nel promuovere e organizzare la cooperazione nella ricerca astronomica. L'ESO gestisce tre siti osservativi unici al mondo in Cile: La Silla, Paranal e Chajnantor. Sul Paranal, l'ESO gestisce il Very Large Telescope, osservatorio astronomico d'avanguardia nella banda visibile e due telescopi per survey. VISTA, il più grande telescopio per survey al mondo, lavora nella banda infrarossa mentre il VST (VLT Survey Telescope) è il più grande telescopio progettato appositamente per produrre survey del cielo in luce visibile. L'ESO è il partner principale di APEX e di ALMA, il più grande progetto astronomico esistente, sulla piana di Chajnantor. E sul Cerro Armazones, vicino al Paranal, l'ESO sta costruendo l'Extremely Large Telescope o ELT (significa Telescopio Estremamente Grande), un telescopio da 39 metri che diventerà "il più grande occhio del mondo rivolto al cielo".
La traduzione dall'inglese dei comunicati stampa dell'ESO è un servizio dalla Rete di Divulgazione Scientifica dell'ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell'ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.
Links
- Articolo scientifico su Astronomy & Astrophysics
- Fotografie del VLT
- Sito di GRAVITY al Max-Planck-Institut für extraterrestrische Physik
- Prima osservazione di successo del centro galattico con GRAVITY
- Osservazioni precedenti con GRAVITY
Contatti
Reinhard Genzel
Director, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 89 30000 3280
E-mail: genzel@mpe.mpg.de
Frank Eisenhauer
GRAVITY Principal Investigator, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 (89) 30 000 3563
E-mail: eisenhau@mpe.mpg.de
Stefan Gillessen
Max-Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 89 30000 3839
E-mail: ste@mpe.mpg.de
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Cell.: +49 151 1537 3591
E-mail: pio@eso.org
Hannelore Hämmerle
Public Information Officer, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 (89) 30 000 3980
E-mail: hannelore.haemmerle@mpe.mpg.de
Joerg Gasser (press contact Svizzera)
Rete di divulgazione scientifica dell'ESO
E-mail: eson-switzerland@eso.org
Sul Comunicato Stampa
Comunicato Stampa N": | eso1825it-ch |
Nome: | Milky Way Galactic Centre |
Tipo: | Milky Way : Galaxy : Component : Central Black Hole |
Facility: | Very Large Telescope |
Instruments: | GRAVITY, NACO, SINFONI |
Science data: | 2018A&A...615L..15G |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.