Pressmeddelande

The Colour of the Young Universe

19 december 2003

An international team of astronomers [1] has determined the colour of the Universe when it was very young. While the Universe is now kind of beige, it was much bluer in the distant past , at a time when it was only 2,500 million years old. This is the outcome of an extensive and thorough analysis of more than 300 galaxies seen within a small southern sky area, the so-called Hubble Deep Field South. The main goal of this advanced study was to understand how the stellar content of the Universe was assembled and has changed over time. Dutch astronomer Marijn Franx , a team member from the Leiden Observatory (The Netherlands), explains: "The blue colour of the early Universe is caused by the predominantly blue light from young stars in the galaxies. The redder colour of the Universe today is caused by the relatively larger number of older, redder stars." The team leader, Gregory Rudnick from the Max-Planck Institut für Astrophysics (Garching, Germany) adds: "Since the total amount of light in the Universe in the past was about the same as today and a young blue star emits much more light than an old red star, there must have been significantly fewer stars in the young Universe than there is now. Our new findings imply that the majority of stars in the Universe were formed comparatively late, not so long before our Sun was born, at a moment when the Universe was around 7,000 million years old." These new results are based on unique data collected during more than 100 hours of observations with the ISAAC multi-mode instrument at ESO's Very Large Telescope (VLT), as part of a major research project, the Faint InfraRed Extragalactic Survey (FIRES) . The distances to the galaxies were estimated from their brightness in different optical near-infrared wavelength bands.

Observing the early Universe

It is now well known that the Sun was formed some 4.5 billion years ago. But when did most of the other stars in our home Galaxy form? And what about stars in other galaxies? These are some of the key questions in present-day astronomy, but they can only be answered by means of observations with the world's largest telescopes.

One way to address these issues is to observe the very young Universe directly - by looking back in time. For this, astronomers take advantage of the fact that light emitted by very distant galaxies travels a long time before reaching us. Thus, when astronomers look at such remote objects, they see them as they appeared long ago.

Those remote galaxies are extremely faint, however, and these observations are therefore technically difficult. Another complication is that, due to the expansion of the Universe, light from those galaxies is shifted towards longer wavelengths [2], out of the optical wavelength range and into the infrared region.

In order to study those early galaxies in some detail, astronomers must therefore use the largest ground-based telescopes, collecting their faint light during very long exposures. In addition they must use infrared-sensitive detectors.

Telescopes as giant eyes

The "Hubble Deep Field South (HDF-S)" is a very small portion of the sky in the southern constellation Tucanae ("the Toucan"). It was selected for very detailed studies with the Hubble Space Telescope (HST) and other powerful telescopes. Optical images of this field obtained by the HST represent a total exposure time of 140 hours. Many ground-based telescopes have also obtained images and spectra of objects in this sky area, in particular the ESO telescopes in Chile.

A sky area of 2.5 x 2.5 arcmin 2 in the direction of HDF-S was observed in the context of a thorough study (the Faint InfraRed Extragalactic Survey; FIRES). It is slightly larger than the field covered by the WFPC2 camera on the HST, but still 100 times smaller than the area subtended by the full moon.

Whenever this field was visible from the ESO Paranal Observatory and the atmospheric conditions were optimal, ESO astronomers pointed the 8.2-m VLT ANTU telescope in this direction, taking near-infrared images with the ISAAC multi-mode instrument. Altogether, the field was observed for more than 100 hours and the resulting images, are the deepest ground-based views in the near-infrared Js- and H-bands. The Ks-band image is the deepest ever obtained of any sky field in this spectral band, whether from the ground or from space.

These unique data provide an exceptional view and have now allowed unprecedented studies of the galaxy population in the young Universe. Indeed, because of the exceptional seeing conditions at Paranal, the data obtained with the VLT have an excellent image sharpness (a "seeing" of 0.48 arcsec) and can be combined with the HST optical data with almost no loss of quality.

A bluer colour

The astronomers were able to detect unambiguously about 300 galaxies on these images. For each of them, they measured the distance by determining the redshift [2]. This was done by means of a newly improved method that is based on the comparison of the brightness of each object in all the individual spectral bands with that of a set of nearby galaxies.

In this way, galaxies were found in the field with redshifts as high as z = 3.2, corresponding to distances around 11,500 million light-years. In other words, the astronomers were seeing the light of these very remote galaxies as they were when the Universe was only about 2.2 billion year old.

The astronomers next determined the amount of light emitted by each galaxy in such a way that the effects of the redshift were "removed". That is, they measured the amount of light at different wavelengths (colours) as it would have been recorded by an observer near that galaxy. This, of course, only refers to the light from stars that are not heavily obscured by dust.

Summing up the light emitted at different wavelengths by all galaxies at a given cosmic epoch, the astronomers could then also determine the average colour of the Universe (the "cosmic colour") at that epoch. Moreover, they were able to measure how that colour has changed, as the Universe became older.

They conclude that the cosmic colour is getting redder with time . In particular, it was much bluer in the past; now, at the age of nearly 14,000 million years, the Universe has a kind of beige colour.

When did stars form?

The change of the cosmic colour with time may be interesting in itself, but it is also an essential tool for determining how rapidly stars were assembled in the Universe.

Indeed, while the star-formation in individual galaxies may have complicated histories, sometimes accelerating into true "star-bursts", the new observations - now based on many galaxies - show that the "average history" of star-formation in the Universe is much simpler. This is evident by the observed, smooth change of the cosmic colour as the Universe became older.

Using the cosmic colour the astronomers were also able to determine how the mean age of relatively unobscured stars in the Universe changed with time. Since the Universe was much bluer in the past than it is now, they concluded that the Universe is not producing as many blue (high mass, short-lived) stars now as it was earlier, while at the same time the red (low mass, long-lived) stars from earlier generations of star formation are still present. Blue, massive stars die more quickly than red, low-mass stars, and therefore as the age of a group of stars increases, the blue short-lived stars die and the average colour of the group becomes redder. So did the Universe as a whole.

This behaviour bears some resemblance with the ageing trend in modern Western countries where less babies are born than in the past and people live longer than in the past, with the total effect that the mean age of the population is rising.

The astronomers determined how many stars had already formed when the Universe was only about 3,000 million years old. Young stars (of blue colour) emit more light than older (redder) stars. However, since there was just about as much light in the young Universe as there is today - although the galaxies are now much redder - this implies that there were fewer stars in the early Universe than today. The present study inidcates that there were ten times fewer stars at that early time than there is now.

Finally, the astronomers found that roughly half of the stars in the observed galaxies have been formed after the time when the Universe was about half as old (7,000 million years after the Big Bang) as it is today (14,000 million years).

Although this result was derived from a study of a very small sky field, and therefore may not be completely representative of the Universe as a whole, the present result has been shown to hold in other sky fields.

Noter

[1] Members of the team include Gregory Rudnick (MPA Garching, Germany), Hans-Walter Rix and Ignacio Trujillo (MPIA Heidelberg, Germany), Marijn Franx, Ivo Labbe, Natascha Foerster Schreiber, Arjen van de Wel, Paul van der Werf and Lottie van Starkenburg (Leiden Observatory, The Netherlands), Michael Blanton (New York University, USA), Emmanuele Daddi and Alan Moorwood (ESO, Germany) and Pieter van Dokkum (Yale University, USA).

[2] In astronomy, the "redshift" denotes the factor by which the lines in the spectrum of an object are shifted towards longer wavelengths. Since the redshift of a cosmological object increases with distance, the observed redshift of a remote galaxy also provides an estimate of its distance.

Mer information

The research described in this Press Release will appear in the December 20 issue of the Astrophysical Journal ("The rest frame optical luminosity density, color, and stellar mass density of the Universe from z=0 to 3" by Gregory Rudnick et al.)

Kontakter

Gregory Rudnick
Max-Planck-Institut für Astrophysik
Garching, Germany
Tel: +49-89-30000-2246
E-post: grudnick@mpa-garching.mpg.de

Marijn Franx
Leidse Sterrewacht
Leiden, Netherlands
Tel: +31 71 527 5870
E-post: franx@strw.leidenuniv.nl

Connect with ESO on social media

Om pressmeddelandet

Pressmeddelande nr:eso0339
Legacy ID:PR 34/03
Namn:Galaxies
Typ:Unspecified : Cosmology
Facility:Very Large Telescope
Instruments:ISAAC
Science data:2003ApJ...599..847R

Bilder

Age of the Universe
Age of the Universe

Skicka dina synpunkter!
Prenumerera för att få nyheter från ESO på ditt språk
Accelerated by CDN77
Regler och villkor
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.