Nota de Imprensa

First Optical Images of the "Invisible" Counter-Jet in Giant Galaxy M87

25 de Fevereiro de 1992

Messier 87 (M87) is a giant galaxy, situated right at the centre of one of the largest and nearest clusters of galaxies, the Virgo Cluster; its distance is about 50 million light-years) and several thousand galaxies belong to this cluster, but none is brighter and heavier than Messier 87. Already in 1918, photos showed the presence of a jet in M87, i.e. a long and thin feature, extending in a westerly direction from the centre of this galaxy. This jet bears witness to the violent processes at the centre of M87 and has led many astronomers to think that there is a giant black hole in there. Recent observations with the Hubble Space Telescope have strengthened this suspicion.

M87 is also special in that it belongs to a select group of radio-emitting galaxies. The jet in particular emits intense radio-emission which is caused by the interaction between a strong magnetic field and very energetic particles ejected from the centre. The same observations have also indicated the presence of a much more diffuse, rather symmetric radio-emission from much of the galaxy. However, contrary to most other radio galaxies, there has been no indication of the existence in M87 of a counter-jet in the opposite, eastward direction. This seemed to show that M87 must be a rather peculiar case and perhaps very different from other radio-galaxies with jets.

Now, however, a group of ESO astronomers has used the 2.5 meter Nordic Optical Telescope (NOT) on the island of La Palma (Canary Islands, Spain) to observe the M87 galaxy under very good conditions. Thanks to the excellent optical quality of this telescope, it was for the first time possible to obtain optical images which clearly show the presence of a counter-jet; one of the images accompanies this Press Release. The new observations indicate that in this sense M87 is less extraordinary than thought before.

11 light-year = 9,460,000,000,000 km. 2The group consists of Palle M0ller (originally from Copenhagen University, Denmark), Massimo Stiavelli (also Scuola Normale Superiore, Pisa, Italy) and Werner W. Zeilinger (originally Astronomisches Institut cler Universitat Wien, Austria, and Department of Astronomy, University of Padova, Italy) .

The giant radio galaxy M87

When photographed in visual light, the galaxy M87 is one of the brightest elliptically shaped galaxies. It also emits strongly at radiofrequencies and is as such known as the radio-source Virgo A, one of the strongest in the sky.

M87 is about ten times brighter than the galaxy in which we live, the Milky Way, and it contains more than one thousand billion stars like our Sun. Astronomers subdivide radiogalaxies into two classes, depending on their radio¬brightness and also the degree of symmetry of the radio-emission. The radiation from galaxies of Type I is less powerful and less symmetric than that from galaxies of Type II. Until now, M87 has been classified as of class I, mainly because of its asymmetrically placed, but otherwise prominent single jet which stretches almost 6000 light-years to the west from the centre.

It is now believed that all the bright and symmetric radio-galaxies of Type II contain two diametrically opposite, powerful jets of energetic particles, mostly electrons which move with velocities very near to that of light and carry great quantities of energy from the centres to the outer regions of the galaxies. The radio emission observed from the jets is synchrotron radiation, i.e. the electromagnetic radiation emitted when the associated, strong magnetic field forces the energetic electrons to move in spiral-shaped orbits. Although most of the synchrotron radiation is emitted as radio waves, it has also been possible to observe this radiation at optical wavelengths in a few Type II radio galaxies.

The optical image of the counterjet in M87

The radio-observations of M87 show a diffuse emission on the other side of the main jet, but do not provide clear evidence of the existence of a counter-jet. Earlier optical observations never showed anything either. However, by means of new, excellent images which were obtained under near-perfect observing conditions at the NOT telescope, the ESO astronomers have now detected an arc-shaped filament to the East of the centre of M87, i.e. in the opposite direction of the main jet. Assuming that the distance of M87 is 50 million light-years, the angular distance of the arc from the centre of M87 (~ 24 arcseconds) corresponds to about 6000 light-years. This is about 1/4 of the distance of the Sun from the centre of the Milky Way Galaxy.

The new images of M87 were obtained in different wavelength bands and it was therefore possible to accurately measure the colour of the arc-shaped nebula. The astronomers found that it is rather red and very closely corresponds to what would be expected from synchrotron emission. They conclude that the arc is shining by the same physical process that is responsible for the radio emission.

Complementary high quality blue images of M87 were obtained at the 2.2 metre ESO IMPI telescope at La Silla. In collaboration with American radioastronomer John Biretta (National Radio Astronomy Observatory, Socorro, New Mexico, USA), the new optical data were compared in detail to radio images obtained with the Very Large Array radiotelescope. The optical emission is observed at the exact location of a "hot radio spot", another strong indication of a common origin.

The nature of the counter-jet

The astronomers conclude that the counter-jet has the form of a hollow cone that is directed towards the far part of M87. The cone is surrounded by interstellar material through which the counter-jet has excavated its present path. The energetic electrons move a long distance inside the cone without emitting much energy and the corresponding part of the counter-jet is therefore not visible. However, at the position of the arc-like structure, the fast moving electrons reach the end of the cone and are suddenly piled up and compress the interstellar medium here so that strong synchrotron radiation is emitted. In this way the counter-jet becomes "visible" here and Can be observed in optical light.

It can be shown that if the counter-jet would be "switched off", the arc-like filament would stop shining approximately 1500 years after the last electrons arrive; this is a very short period in astronomical terms. The fact that it is actually observed is therefore a strong indication that the counter-jet has been active for a long time and continues to be active.

The optical images thus prove the existence of a counter-jet in M87 supporting that this galaxy is, after all, quite similar to other radiogalaxies which harbour double jets. Further studies are now needed to better understand exactly how the counter-jet can transport the large amounts of energy needed to account for the observed synchrotron radiation over such large distances without being detectable itself.

Informações adicionais

The new results are presented in detail in a scientific paper which will appear 10 in the February 27 issue of the scientific journal Nature.

Contactos

Richard West
ESO EPR Dept
Garching, Germany
Email: information@eso.org

Connect with ESO on social media

Sobre a Nota de Imprensa

Nº da Notícia:eso9203
Legacy ID:PR 02/92
Nome:Messier 87
Tipo:Local Universe : Galaxy : Type : Elliptical
Facility:MPG/ESO 2.2-metre telescope

Imagens

First optical images of the
First optical images of the "invisible" counter-jet in giant galaxy M87

Envie-nos os seus comentários!
Subscreva-se para receber notícias do ESO em português
Accelerated by CDN77
Termos e Condições
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.