Nota de Imprensa
Sharp Vision Reveals Intimacy of Stars
AMBER instrument on VLTI Probes Environment of Stars
24 de Novembro de 2005
Using the newly installed AMBER instrument on ESO's Very Large Telescope Interferometer, which combines the light from two or three 8.2-m Unit Telescopes thereby amounting to observe with a telescope of 40 to 90 metres in diameter, two international teams of astronomers observed with unprecedented detail the environment of two stars. One is a young, still-forming star and the new results provide useful information on the conditions leading to the creation of planets. The other is on the contrary a star entering the latest stages of its life. The astronomers found, in both cases, evidence for a surrounding disc.
A first group of astronomers [1], led by Fabien Malbet from the Laboratoire d'Astrophysique de Grenoble, France, studied the young 10-solar mass stellar object MWC 297, which is still in the very early stage of its life [2].
"This scientific breakthrough opens the doors to an especially detailed scrutiny of the very close environment of young stars and will bring us invaluable knowledge on how planets form", says Malbet.
It is amazing to see the amount of details the astronomers could achieve while observing an object located more than 800 light-years away and hidden by a large amount of gas and dust. They found the object to be surrounded by a proto-planetary disc extending to about the size of our Solar System, but truncated in his inner part until about half the distance between the Earth and the Sun. Moreover, the scientists found the object to be surrounded by an outflowing wind, the velocity of which increased by a factor 9, from about 70 km/s near the disc to 600 km/s in the polar regions [3].
"The reason why the inner part of the disc should be truncated is not clear", adds Malbet. "This raises new questions on the physics of the environment of intermediate mass young stars."
The astronomers now plan to perform observations with AMBER [4] with three telescopes to measure departure from symmetry of the material around MWC 297.
Another international team of astronomers [5] has just done this kind of observations to study the surroundings of a star entering the last stages of its life. In a world premiere, they combined with AMBER the light of three 8.2-m Unit Telescopes of the VLT, gaining unsurpassed knowledge on a B[e] supergiant, a star that is more luminous than our Sun by more than a factor 10,000. This supergiant star is located ten times further away than MCW 297 at more than 8,000 light-years.
The astronomers made the observations to investigate the crucial questions concerning the origin, geometry, and physical structure of the envelope surrounding the star.
These unique observations have allowed the scientists to see structures on scale as small as 1.8 thousandths of an arcsecond - that is the same as distinguishing between the headlights of a car from about 230,000 km away, or slightly less than 2/3 of the distance from the Earth to the Moon!
Armando Domiciano de Souza, from the MPI für Radioastronomie in Bonn (Germany) and his colleagues made also use of the MIDI instrument on the VLTI [6], using two Unit Telescopes. Using their full dataset, they found the circumstellar envelope around the supergiant to be non-spherical, most probably because the star is also surrounded by an equatorial disc made of hot dust and a strong polar wind.
"These observations are really opening the doors for a new era of understanding of these complex and intriguing objects", says Domiciano de Souza.
"Such results could be achieved only due to the spectral resolution as well as spatial resolution that AMBER offers. There isn't any similar instrument in the world," concludes Fabien Malbet, who is also the AMBER Project Scientist.
Notas
[1]: The team of astronomers having conducted the study of MCW 297 with AMBER and ISAAC is composed of : F. Malbet , M. Benisty , W.J. De Wit, E. Tatulli, and J.-P. Berger (Laboratoire d'Astrophysique de Grenoble - LAOG, France), S. Kraus, K.-H. Hofmann, T. Preibisch, and G. Weigelt (Max-Planck Institut für Radioastronomie, Bonn, Germany), A. Meilland, O. Chesneau, and P. Stee (Laboratoire Gemini, Observatoire de la Côte d'Azur, France), R. Petrov (Laboratoire Universitaire d'Astrophysique de Nice - LUAN, France), A. Isella and L. Testi (INAF-Osservatorio Astrofisico di Arcetri, Italy), F. Millour (LAOG and LUAN), and their colleagues.
[2]: If the lifetime of the Sun were scaled to that of a human, the Sun would be starting his forties, whereas the star MWC 297 would just be a 1-3 day old newborn. The B[e] supergiant on the other hand would be almost 80 years old.
[3]: MWC 297 was observed during the second night of the first commissioning run of the AMBER instrument on the Kueyen-Melipal (47m) baseline of the VLTI. Additional observations were made using the ISAAC near-infrared spectrograph attached to Antu.
[4]: The Astronomical Multiple BEam Recombiner (AMBER) is a near-infrared, multi-beam interferometric instrument, combining simultaneously 3 telescopes. It was built in collaboration with ESO by a consortium of French, German and Italian institutes. It is offered to the users since October 2005. For more information, see the AMBER homepage.
[5]: The study of the B[e] supergiant, named CPD -57o 2874, was made by A. Domiciano de Souza, T. Driebe, K.-H. Hofmann, S. Kraus, K. Ohnaka, Th. Preibisch, and G. Weigelt (Max-Planck-Institut für Radioastronomie, Bonn, Germany), O. Chesneau and P. Stee (Observatoire de la Côte d'Azur, Gemini, France), A. S. Miroshnichenko (MPfR, Bonn, Germany and Dept. of Physics and Astronomy, University of North Carolina at Greensboro, USA), R. G. Petrov (Lab. Univ. d'Astrophysique de Nice, France), F. Lisi (INAF-Osservatorio Astrof. Di Arcetri, Italy), F. Malbet (Laboratoire d'Astrophysique de Grenoble, France), and A. Richichi (ESO, Garching, Germany).
[6]: MIDI is the mid-infrared (8 to 13 microns) instrument of the VLT interferometer. It combines two beams (either from the 8.2-m Unit Telescopes or from the 1.8-m Auxiliary Telescopes).
Informações adicionais
The results presented in this press release are described in two papers to be published in the leading research journal, Astronomy and Astrophysics and are available, as PDF file, from the publisher web site: "Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLT/AMBER" by F. Malbet et al., "VLTI/AMBER and VLTI/MIDI spectro-interferometric observations of the B[e] supergiant CPD -57o 2874" by A. Domiciano de Souza et al.
Press releases on the MCW 297 results are also published in French by the CNRS, in Italian by INAF, and in German by the Max-Planck Institute.
Contactos
Fabien Malbet
Laboratoire d'Astrophysique de Grenoble (LAOG)
Grenoble, France
Tel: +33 (0) 47 663 58 33
Email: Fabien.Malbet@obs.ujf-grenoble.fr
Armando Domiciano de Souza
Tel: +33 (0) 49 207 65 75
Email: Armando.Domiciano@unice.fr
Sobre a Nota de Imprensa
Nº da Notícia: | eso0538 |
Legacy ID: | PR 29/05 |
Nome: | MWC 297 |
Tipo: | Milky Way : Star : Evolutionary Stage : Young Stellar Object Milky Way : Star : Type : Variable |
Facility: | Very Large Telescope, Very Large Telescope Interferometer |
Instrumentos: | AMBER, ISAAC |
Science data: | 2007A&A...464...43M |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.