Press Release
Possible Planetary System Photographed Around Nearby Star
5 January 1987
Based on observations obtained at the European Southern Observatory (ESO), astronomers at the Space Telescope Science Institute (STScI) have uncovered the strongest evidence yet for the presence of a giant planetary or protoplanetary system accompanying a nearby star [1].
Using special observational and image analysis techniques, Francesco Paresce and Christopher Burrows, of STScI and the European Space Agency (ESA), have made the first visible light images of a large disc of material closely bound to the star Beta Pictoris. The disc is at least 80.000 million kilometres across, or more than three times the diameter of our solar system.
The observations were made at the ESO La Silla observatory in the Atacama desert in Chile. The astronomers will present their findings at the 169th meeting of the American Astronomical Society in Pasadena, California on January 5th.
An unusual excess of infrared radiation, indicative of circumstellar matter, was initially detected around Beta Pictoris by the Infrared Astronomy Satellite (IRAS) in 1983. Subsequent ground-based observations revealed the presence of a disc-like feature at near-infrared wavelengths.
When Paresce and Burrows made detailed observations of the disc at several regions of the visible light spectrum, they found that the reflectivity of the disc material was neutral, or wavelength independent. This means that the colour and spectral characteristics of light reflected from the disc almost exactly matched the spectrum of light emitted from the star itself.
This observation offers the strongest indications yet that the disc is made up of relatively large solid particles. If it were extremely fine dust, which is commonly found in interstellar space, it would scatter only the bluer wavelengths of starlight. The observational data alone cannot establish the true size of the reflecting particles but does set a lower limit of about 0.001 millimetre (1 micron). At this diametre or greater, the particles found around Beta Pictoris are at least ten times larger than material normally observed in interstellar space.
“The observations show unequivocally that an agglomeration process is in an advanced state, where fine interstellar grains stuck together to form larger clumps", reports Dr. Paresce. It is believed that as such a 'snowballing' process continues, the disc material may eventually accrete into planet-sized objects, if they have not done so already. Our solar system may have condensed or accreted out of thick dust grains which formed a circumstellar nebula that accompanied the birth of our sun, approximately 4600 million years ago.
The presently available observational data cannot determine the composition of the particles, though they likely contain silicates, carbonaceous materials, and water ice - common elements abundant within our own solar system.
The evidence for planetary formation is also supported by the fact that the large dust particles are arranged in a flattened disc. The disc likely formed out of an immense, protostellar nebula that contracted and collapsed into the feature seen today. Most of the nebula's gas and dust concentrated at the centre of the disc to form the star Beta Pictoris. The remaining material now continues to orbit the star.
At present it is not known if planets already formed within the disc or if it is still in a protoplanetary stage. “All that can be said for sure is that the disc has progressed from a 'fine sand' stage into at least a 'pebble' stage", says Dr. Paresce.
Beta Pictoris is a relatively young star estimated to be no older than 1000 million years, or about one fifth the age of our sun. Approximately 50 light years away, it is a socalled 'main-sequence dwarf', like our sun.
Paresce and Burrows made their observations of Beta Pictoris, which is visible as a fourth magnitude star in the southern hemisphere, with the ESO 2.2 metre telescope. Attaching a coronograph of their own design and fabrication, the researchers blocked out the brilliant image of the star, so that the faint circumstellar features could be photographed with a CCD (Charge Coupled Device) detector. To allow analysis of the disc at various wavelengths of light, a series of exposures were then taken through bandpass filters across the visible spectrum. These difficult observations were facilitated by the excellent atmospheric conditions at the ESO La Silla observatory.
As a control, an identical observing sequence was performed on the stars Delta Hydrus and Alpha Pictoris which are not expected to have prominent circumstellar disc features visible from Earth.
Through special data analysis techniques developed by Paresce and Burrows, the two stellar images were corrected for known instrumental effects, precisely registered, and differences between the two images were evaluated. This was an especially challenging task since the researchers were probing the near vicinity of Beta Pictoris and had to contend with intense scattered light from the star itself. They also had to be sure that they were seeing reflected light from a true disc feature and not contamination produced by the instrument optics.
Their resulting data yields the first true, photometrically accurate image of the Beta Pictoris disc, down to about four arcseconds from the star. Never before has such a relatively faint feature been photographed within such close proximity to such a bright star.
The resulting images reveal a highly flattened disc which extends symmetrically outward from Beta Pictoris, into a northeast and southwest direction on the sky. The disc's apparent angular width may indicate that it is slightly tilted to our line of sight. The disc dramatically increases in brightness toward its center, though its structure closer to Beta Pictoris is not visible due to the occulting finger which blocks out most of the light from the star.
Astronomers are eager to find evidence of extrasolar planetary systems to learn whether our own solar system was created out of very unique conditions, or whether it is the result of common and fundamental processes that accompany stellar formation. These questions can not be satisfactorily answered until astronomers have carefully studied examples of planetary formation other than our own solar system.
Paresce and Burrows have images of planetary or protoplanetary around other stars to analyze. They also plan to make detailed observations of Beta Pictoris with the NASA/ESA Hubble Space Telescope, which is now scheduled for launch in late 1988. With its significant increase in resolution over present ground-based instruments, the Space Telescope will have the capability to provide a far more detailed view of the disc's structure, closer to the star. It will also have the potential for detecting the extremely faint glow of planets which may accompany the star. It is also expected that this fascinating area of astronomical research will greatly benefit from future, giant telescopes on the ground, such as the ESO 16 metre Very Large Telescope (VLT), now in the final planning stage.
Notes
[1] The text of this Press Release is published simultaneously by STScI and ESO. A B/W picture is available on request from both organisations.
More information
The Hubble Space Telescope is a project of international collaboration between NASA and ESA. The Space Telescope Science Institute is operated for NASA by the Association of Universities for Research in Astronomy (AURA). It is located on the Johns Hopkins University Campus in Baltimore, Maryland, U.S.A.
The European Southern Observatory is an international organisation, supported by eight countries (Belgium, Denmark, France, the Federal Republic of Germany, Italy, the Netherlands, Sweden and Switzerland). Its headquarters are located in Garching near Munich, F.R.Germany, and the observatory is at La Silla, 600 kilometres north of Santiago de Chile, South America.
Contacts
Richard West
ESO
Garching, Germany
Tel: +49 89 3200 6276
Email: information@eso.org
About the Release
Release No.: | eso8701 |
Legacy ID: | PR 01/87 |
Name: | Beta Pictoris, Bet Pic |
Type: | Milky Way : Star : Evolutionary Stage : Main Sequence |
Facility: | MPG/ESO 2.2-metre telescope |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.