Press Release

First Observations from SEPIA

New APEX instrument for finding water in the Universe

4 November 2015

A new instrument attached to the 12-metre Atacama Pathfinder Experiment (APEX) telescope at 5000 metres above sea level in the Chilean Andes is opening up a previously unexplored window on the Universe. The Swedish–ESO PI receiver for APEX (SEPIA) will detect the faint signals from water and other molecules within the Milky Way, other nearby galaxies and the early Universe.

Installed on APEX earlier this year, SEPIA [1] is sensitive to light with wavelengths in the range 1.4–1.9 millimetres [2]. The exceptional observing conditions on the extremely dry Chajnantor Plateau in northern Chile mean that, although this light is blocked by water vapour in the atmosphere at most places on Earth, SEPIA is still able to detect the faint signals coming from space.

This wavelength region is of great interest to astronomers as signals from water in space are found here. Water is an important indicator of many astrophysical processes, including the formation of stars, and is believed to play an important role in the origin of life. Studying water in space — in molecular clouds, in star-forming regions and even in comets within the Solar System — is expected to provide critical clues to the role of water in the Milky Way and in the history of the Earth. In addition, SEPIA’s sensitivity makes it a powerful tool for also detecting carbon monoxide and ionised carbon in galaxies in the early Universe.

The new SEPIA receiver has been used to make test astronomical observations at APEX during 2015. Identical receivers are being installed in the ALMA antennas. Results from the new detector on APEX have shown it to be working well. With this validation, SEPIA is being made available to the wider scientific community. Observations with SEPIA can now be proposed by astronomers in the community.

"The first measurements with SEPIA on APEX show that we really are opening up a new window, including looking at water in interstellar space — SEPIA  will give astronomers a chance to search for objects that can be followed up at higher spatial resolution when the same receiver becomes operational on the ALMA array," says John Conway, director of Onsala Space Observatory, Chalmers University of Technology in Sweden.

Just as dark skies are essential to see faint objects in visible light, a very dry atmosphere is needed to pick up the signals from water in the cosmos at longer wavelengths. But dry conditions are not the only requirement, the detectors need to be cooled to a very low temperature of –269 degrees Celsius — just 4 degrees above absolute zero — for them to work. Recent technological advancements have only now made these detectors possible and practical.

APEX, which is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO, is the largest single-dish submillimetre telescope operating in the southern hemisphere and is based on a prototype antenna constructed for the ALMA project.


[1] SEPIA stands for “Swedish ESO PI receiver for APEX”. SEPIA was designed and built by Onsala Space Observatory's Group for Advanced Receiver Development (GARD) at Chalmers University of Technology in Sweden, and supported by ESO. SEPIA has room for three receivers and currently one receiver is in position. The receiver cartridge was originally developed and tested for ALMA Band 5 as part of a project under the European Commission supported Framework Programme FP6 (ALMA Enhancement). ESO delivered the local oscillator source and the room temperature electronics were produced by NRAO.  (ann15059).

Sepia is also a colour with a close connection to water. The reddish-brown shade, characteristic of pigment collected from the cuttlefish of genus Sepia (found in the waters of both Sweden and Chile), has been used in ink since ancient times and sepia toning is a well-known way of giving photographic prints a longer life.

[2] Frequencies between 158 and 211 GHz.

More information

APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. Operation of APEX at Chajnantor is carried out by ESO.

ALMA is a partnership of ESO (representing its Member States), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (South Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.



Carlos De Breuck
ESO APEX Programme Scientist
Garching bei München, Germany
Tel: +49 89 3200 6613

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591

Connect with ESO on social media

About the Release

Release No.:eso1543
Name:First Light, SEPIA
Type:Unspecified : Technology : Observatory : Instrument
Facility:Atacama Pathfinder Experiment


New APEX instrument for finding water in the Universe
New APEX instrument for finding water in the Universe
New APEX instrument for finding water in the Universe
New APEX instrument for finding water in the Universe
SEPIA instrument being installed on APEX
SEPIA instrument being installed on APEX
Schematic drawing of the SEPIA instrument
Schematic drawing of the SEPIA instrument
Observations of the star W Hydrae using SEPIA
Observations of the star W Hydrae using SEPIA