Ci scusiamo. Questa pagina non è ancora disponibile nella lingua scelta e perciò viene mostrata la versione originale.
Page saved successfully
Couldn't save page :( Please try again.
Though frequently beautiful, comets traditionally have stricken terror as often as they have generated wonder as they arc across the sky during their passages around the Sun. Astrologers interpreted the sudden appearances of the glowing visitors as ill omens presaging famine, flood or the death of kings. Even as recently as the 1910 appearance of Halley's Comet, entrepreneurs did a brisk business selling gas masks to people who feared Earth's passage through the comet's tail.
In the 4th century B.C., the Greek philosopher Aristotle concluded that comets were some kind of emission from Earth that rose into the sky. The heavens, he maintained, were perfect and orderly; a phenomenon as unexpected and erratic as a comet surely could not be part of the celestial vault. In 1577, Danish astronomer Tycho Brahe carefully examined the positions of a comet and the Moon against the stars during the evening and predawn morning. Due to parallax, a close object will appear to change its position against the stars more than a distant object will -- the same effect that you see if you hold up a finger and look at it while closing one eye and then the other. The Moon appeared to move more against the stars from evening to morning than the comet did, leading Tycho to conclude that the comet was at least six times farther away.
A hundred years later, the English physicist Isaac Newton established that a comet appearing in 1680 followed a nearly parabolic orbit. The English astronomer Edmond Halley used Newton's method to study the orbits of two dozen documented cometary visits. The orbits of three comets seen in 1531, 1607 and 1682 were so similar that he concluded they in fact were appearances of a single comet wheeling around the Sun in a closed ellipse every 75 years or so. He successfully predicted the next visit in 1758-9, and the comet thereafter bore his name.
Since then, astronomers have concluded that some comets return relatively frequently, in intervals ranging from 3 to 200 years; these are called "short-period" comets. Others have enormous orbits that bring them back only once in hundreds of millennia.
In the mid-1800s, scientists also began to turn their attention to the question of comets' composition. Astronomers noted that several major meteor showers took place when Earth passed through the known orbits of comets, leading them to conclude that the objects are clumps of dust or sand. By the early 20th century, astronomers studied comets using the technique of spectroscopy, breaking down the color spectrum of light given off by an object to reveal the chemical makeup of the object. They concluded that comets also emitted gases as well as molecular ions.
In 1950, the American astronomer Fred L. Whipple (1906-2004) authored a major paper proposing what became known as the "dirty snowball" model of the cometary nucleus. This model, which has since been widely adopted, pictures the nucleus as a mixture of dark organic material, rocky grains and water ice. ("Organic" means that the compound is based on carbon and hydrogen, but is not necessarily biological in origin.) Most nuclei of comets range in size from about 1 to 10 kilometers (1/2 to 6 miles) in diameter.
If comets contain icy material, they must originate somewhere much colder than the relatively warm inner solar system. In 1950, the Dutch astronomer Jan Hendrick Oort (1900-1992) used indirect reasoning from observations to predict the existence of a vast cloud of comets orbiting many billions of miles from the Sun - perhaps 50,000 astronomical units (AU) away (one AU is the distance from Earth to the Sun), or nearly halfway to the next nearest star. This region has since become known as the Oort Cloud.
A year later, the Dutch-born American astronomer Gerard Kuiper (1905-1973) pointed out that the Oort Cloud is too distant to act as the nursery for short-period comets. He suggested the existence of a belt of dormant comets lying just outside the orbits of the planets at perhaps 30 to 100 AU from the Sun; this has become known as the Kuiper Belt. (Other astronomers such as Frederick Leonard and Kenneth Edgeworth also speculated about the existence of such a belt in the 1930s and 1940s, and so the region is sometimes referred to as the Edgeworth-Kuiper Belt, the Leonard-Edgeworth-Kuiper Belt, and so on.) Close encounters with other dormant comets sometimes change their orbits so that they venture in toward the Sun and fall under the influence of the gravities of the giant outer planets -- first Neptune, then Uranus, then Saturn and finally Jupiter.
The Oort Cloud, by contrast, would be the home of long-period comets. They are periodically nudged from their orbits by any one of several influences - perhaps the gravitational pull of a passing star or giant molecular cloud, or tidal forces of the Milky Way Galaxy.
In addition to the length of time between their visits, another feature distinguishes short- and long-period comets. The orbits of short-period comets are all fairly close to the ecliptic plane, the plane in which Earth and most other planets orbit the Sun. Long-period comets, by contrast, dive inwards toward the Sun from virtually any part of the sky. This suggests that the Kuiper Belt is a relatively flat belt, whereas the Oort Cloud is a three-dimensional sphere surrounding the solar system.
Read more about why comets are important targets of study.
This text is extracted from the NASA Deep Impact Launch Press Kit. More information on the Deep Impact mission is available on the project home page.
For more historical background on comets, please have a look at the History of Comet page.
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
ON | OFF
Matomo cookies settings:
Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
Browser-session cookies, which are deleted when the user closes the browser;
Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.