Lehdistötiedote
Another Look at an Enigmatic New World
VLT NACO Performs Outstanding Observations of Titan's Atmosphere and Surface
24. helmikuuta 2005
On January 14, 2005, the ESA Huygens probe arrived at Saturn's largest satellite, Titan. After a faultless descent through the dense atmosphere, it touched down on the icy surface of this strange world from where it continued to transmit precious data back to the Earth.
Several of the world's large ground-based telescopes were also active during this exciting event, observing Titan before and near the Huygens encounter, within the framework of a dedicated campaign coordinated by the members of the Huygens Project Scientist Team. Indeed, large astronomical telescopes with state-of-the art adaptive optics systems allow scientists to image Titan's disc in quite some detail. Moreover, ground-based observations are not restricted to the limited period of the fly-by of Cassini and landing of Huygens. They hence complement ideally the data gathered by this NASA/ESA mission, further optimising the overall scientific return.
A group of astronomers [1] observed Titan with ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile) during the nights from 14 to 16 January, by means of the adaptive optics NAOS/CONICA instrument mounted on the 8.2-m Yepun telescope [2]. The observations were carried out in several modes, resulting in a series of fine images and detailed spectra of this mysterious moon. They complement earlier VLT observations of Titan.
The highest contrast images
The new images show Titan's atmosphere and surface at various near-infrared spectral bands. The surface of Titan's trailing side is visible in images taken through narrow-band filters at wavelengths 1.28, 1.6 and 2.0 microns. They correspond to the so-called "methane windows" which allow to peer all the way through the lower Titan atmosphere to the surface. On the other hand, Titan's atmosphere is visible through filters centred in the wings of these methane bands, e.g. at 2.12 and 2.17 microns.
Eric Gendron of the Paris Observatory in France and leader of the team, is extremely pleased: "We believe that some of these images are the highest-contrast images of Titan ever taken with any ground-based or earth-orbiting telescope."
The excellent images of Titan's surface show the location of the Huygens landing site in much detail. In particular, those centred at wavelength 1.6 micron and obtained with the Simultaneous Differential Imager (SDI) on NACO [4] provide the highest contrast and best views. This is firstly because the filters match the 1.6 micron methane window most accurately. Secondly, it is possible to get an even clearer view of the surface by subtracting accurately the simultaneously recorded images of the atmospheric haze, taken at wavelength 1.625 micron.
The images show the great complexity of Titan's trailing side, which was earlier thought to be very dark. However, it is now obvious that bright and dark regions cover the field of these images.
The best resolution achieved on the surface features is about 0.039 arcsec, corresponding to 200 km on Titan. The image llustrates the striking agreement between the NACO/SDI image taken with the VLT from the ground and the ISS/Cassini map.
The images of Titan's atmosphere at 2.12 microns show a still-bright south pole with an additional atmospheric bright feature, which may be clouds or some other meteorological phenomena. The astronomers have followed it since 2002 with NACO and notice that it seems to be fading with time. At 2.17 microns, this feature is not visible and the north-south asymmetry - also known as "Titan's smile" - is clearly in favour in the north. The two filters probe different altitude levels and the images thus provide information about the extent and evolution of the north-south asymmetry.
Probing the composition of the surface
Because the astronomers have also obtained spectroscopic data at different wavelengths, they will be able to recover useful information on the surface composition.
The Cassini/VIMS instrument explores Titan's surface in the infrared range and, being so close to this moon, it obtains spectra with a much better spatial resolution than what is possible with Earth-based telescopes. However, with NACO at the VLT, the astronomers have the advantage of observing Titan with considerably higher spectral resolution, and thus to gain more detailed spectral information about the composition, etc. The observations therefore complement each other.
Once the composition of the surface at the location of the Huygens landing is known from the detailed analysis of the in-situ measurements, it should become possible to learn the nature of the surface features elsewhere on Titan by combining the Huygens results with more extended cartography from Cassini as well as from VLT observations to come.
Lisähuomiot
[1] The team is composed of Eric Gendron, Athena Coustenis, Mathieu Hirtzig, Michel Combes, Pierre Drossart, and Alberto Negrao (LESIA, Paris-Meudon Observatory, France), Pascal Rannou (Univ. de Versailles, France), Markus Hartung (ESO), Tom Herbst (Max-Planck Institute for Astronomy, Heidelberg, Germany), Tobias Owen (IfA, Hawaii), Laird Close (University of Arizona, USA), Olivier Witasse and Jean-Pierre Lebreton (ESA/ESTEC).
[2] Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. Adaptive Optics is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second.
[3] Titan is tidally-locked to Saturn, and hence always presents the same face towards the planet. To image all sides of Titan (from the Earth) therefore requires observations during almost one entire orbital period, 16 days. The trailing hemisphere is the one we see when Titan moves away from us in its course around Saturn. The leading hemisphere is the one on the other side.
[4] The Simultaneous Differential Imager is a novel optical device that provides four simultaneous high-resolution images at three wavelengths around a near-infrared atmospheric methane absorption feature. The main application of the SDI is high-contrast imaging for the search for substellar companions with methane in their atmosphere, e.g. brown dwarfs and giant exoplanets, near other stars. However, as the present photos demonstrate, it is also superbly suited for Titan imaging.
Lisätietoa
Results on Titan obtained with data from NACO/VLT are in press in the journal Icarus ("Maps of Titan's surface from 1 to 2.5 micron" by A. Coustenis et al.).
Yhteystiedot
Eric Gendron
Observatoire de Paris
Paris, France
Puh.: 331 45 07 79 18
Sähköposti: eric.gendron@obspm.fr
Athéna Coustenis
Observatoire de Paris
Paris, France
Puh.: 331 45 07 77 20
Sähköposti: Athena.Coustenis@obspm.fr
Markus Hartung
ESO
Santiago, Chile
Puh.: +56 2 463 3071
Sähköposti: mhartung@eso.org
Tiedotteesta
Tiedote nr.: | eso0505 |
Legacy ID: | Photo 04/05 |
Nimi: | Titan |
Tyyppi: | Solar System : Planet : Satellite |
Facility: | Very Large Telescope |
Instruments: | NACO |
Science data: | 2005Icar..177...89C |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.