Tisková zpráva
Big Radio Galaxy is Nearer than Previously Thought
13. května 1986
Detailed observations of a bright supernova in the peculiar galaxy NGC 5128 = Centaurus A, have led astronomers at the European Southern Observatory to believe that this galaxy is much closer to us than previously thought. It is the nearest, strongly radio-emitting galaxy and is as such an object of crucial importance in modern astrophysical research. The revised distance is 7 - 10 million light years or only 3 - 4 times farther away than the Andromeda Nebula. Cen A may therefore even be an outlying member of the Local Group. The total radio emission energy corresponds to the conversion to pure energy (annihilation) of a mass equal to 10.000 suns.
The supernova in Cen A, which has received the official designation 1986G by the International Astronomical Union, was discovered on May 3.5 UT by Reverend R. Evans, an amateur astronomer in Australia, who has more than a dozen earlier discoveries to his credit. It appeared as a “new star", southeast of the center of Cen A and almost in the middle of the broad dust band that girdles this unusual galaxy (see attached picture). The magnitude was estimated as 12. No supernovae have been detected in this galaxy before. This event is of particular interest, because bright supernovae are rather rare and also because of the peculiar nature of the parent galaxy. The most recent supernova of a similar magnitude was in 1980, in the northern, spiral galaxy NGC 6946 [1].
Observations at ESO with the 1 m and 50 cm photometric telescopes have shown that supernova 1986G was still brightening at a rate of about 0.05 mag/day on May 11.2 UT. On this date, the V-magnitude was 11.4 and colour index (B-V) was 1.1 mag. CCD images were exposed at the Danish 1.5 m telescope. Low-dispersion IDS and CCD spectra have been obtained with the ESO 1.5 m spectroscopic telescope and with the 2.2 m telescope. They show a typical Type I supernova spectrum before maximum, significantly reddened by absorption in Cen A. Of special interest are very high dispersion spectral observations, obtained with the CASPEC spectrograph at the ESO 3.6 m telescope. The Calcium and Sodium spectral lines show a complicated structure with no less than six very deep absorption components, four of which originate in rapidly moving interstellar clouds in Cen A.
These observations, and the position near the middle of the dust band, indicate that the supernova is situated well inside the galaxy and that its light is dimmed by about 4 mag due to obscuring dust. Had it been situated in an unobscured region, its magnitude would have been about 7.5, making it the brightest supernova in this century. Due to Cen A's peculiar structure (some astronomers consider it to be the result of a collision among two galaxies), it has not yet been possible to measure an accurate distance to this galaxy. However, if the intrinsic brightness of 1986G is that of a normal Type I supernova, then the distance to Cen A would be only 2 - 3 Megaparsecs (7 - 10 million light years). Assuming the upper figure, the total radio energy is at least erg, that is the equivalent of solar masses. Obviously, Cen A was the site of a most energetic event not so long ago - the velocities of the interstellar clouds may be relicts of this.
Poznámky
[1] Supernovae are believed to represent a late evolutionary stage of massive stars in which the star runs out of atomic fuel. It can no longer support its own weight and collapeses. Immediately thereafter follows a dramatic thermonuclear explosion during which the outer layers are blown into the surrounding space. A small and very compact object may remain at the centre. The best known historical supernova was seen in the year 1054, giving birth to the Crab Nebula and an associated neutron star, which was detected as a radio pulsar in 1967. Most, if not all heavy elements in the universe have been generated in the exceedingly hot interiors of stars in the supernovae phase. Suernovae are very rarely discovered before they reach their maximal brightness and little is known about the early phases. Currently, about 20-25 supernovae are detected per year in exterior galaxies; the last one in our own galaxy, the Milky Way, appears to be the one found by Kepler in the constellation Ophioucus in 1604.
Další informace
The ESO observations are continuing. The following ESO staff and visiting astronomers have participated so far: I. Bues, P.R. Christensen, S. di Serego Alighieri, H. Duerbeck, G. Galletta, P. Magain, P.E. Nissen, D. Reimers, P. Schulte Ladbeck and J. Sommer-Larsen.
Kontakty
Richard West
ESO
Garching, Germany
Tel.: +49 89 3200 6276
Email: information@eso.org
O zprávě
Tiskové zpráva č.: | eso8608 |
Legacy ID: | PR 07/86 |
Jméno: | Cen A, Centaurus A, NGC 5128, SN 1986 G |
Typ: | Local Universe : Galaxy : Type : Lenticular |
Facility: | Danish 1.54-metre telescope, ESO 1.52-metre telescope, ESO 3.6-metre telescope, MPG/ESO 2.2-metre telescope |
Instruments: | CASPEC |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.