Tisková zpráva

Supermasivní černá díra pod lupou

12. prosince 2008

Spojením možností ESO/VLT a „dvojité přírodní lupy“ astronomové prozkoumali vnitřní partie disku kolem supermasivní černé díry vzdálené 10 miliard světelných let. Díky této technice bylo možné spatřit tisíckrát jemnější detaily, než umožňují nejlepší současné teleskopy světa. Získaná data představují první přímé pozorování potvrzující dosavadní teoretické modely těchto disků.

Tým evropských a amerických astronomů studoval známé kosmické zrcadlení – takzvaný Einsteinův kříž, což je konfigurace čtyř navzájem protilehlých obrazů jediného velmi vzdáleného zdroje. Tyto obrazy jsou vytvářeny v důsledku jevu známého jako gravitační čočka, který je způsoben přítomností mezilehlé galaxie. Jev předpověděl již Albert Einstein; je totiž důsledkem jeho obecné teorie relativity. Zrcadlený objekt je v tomto případě pravděpodobně kvasar ve vzdálenosti deseti miliard světelných let, zatímco čočkující galaxie je k nám desetkrát blíže. Gravitační pole galaxie zakřivuje trajektorii světla a my můžeme pozorovat zvětšený obraz kvasaru.  

Efekt zvětšení obrazu, známý jako "macrolensing", kde galaxie zastupuje úlohu přirozeného kosmického dalekohledu či lupy, je v astronomii velmi užitečný. Umožňuje totiž pozorovat vzdálené objekty, které by jinak byly příliš slabé pro přímé studium současnou technikou. „Kombinace tohoto přírodního zvětšení s použitím velkých dalekohledů nám poskytuje nejostřejší a nejdetailnější pohled, jaký kdy byl k dispozici,“  vysvětluje Frédéric Courbin, vedoucí programu studia Einsteinova kříže pomocí ESO/VLT.

Dalším vylepšením macrolensingu je sekundární zvětšení, způsobené tentokrát jednotlivými hvězdami galaxie. Jde o stejný fyzikálním princip, ovšem v mnohem menším měřítku, a proto je tento jev nazýván „microlensing“ (v češtině je používán ekvivalent mikročočkování). V důsledku pohybu hvězd v čočkující galaxii se mění sekundární zvětšení obrazů způsobené mikrolensingem. To vede k rychlým změnám jasnosti všech čtyř obrazů vzdáleného kvasaru. Velikost oblasti, kterou díky microlensingu pozorujeme, je v tomto případě několik světelných dní, tedy rozměr srovnatelný s velikostí akrečního disku kvasaru.

Mikrolensing však neovlivňuje záření disku na všech vlnových délkách stejně. Více zvětšeny jsou menší oblasti, což je důsledek jiného charakteru vyzařování (jiné barvy) pro různě rozsáhlé oblasti s odlišnou teplotou. Tak vznikají další tentokrát barevné změny v obrazech kvasaru. Při dlouhodobém sledování (několik let) těchto jemných variací je možné změřit, jaké je rozložení hmoty a energie v okolí supermasivní černé díry skryté v samotném centru kvasaru. Astronomové tuto oblast pozorovali po dobu tří let, každý měsíc třikrát, za pomocí dalekohledu ESO/VLT. Přitom sledovali rychlé změny jasnosti i barvy (takzvaný flickering) ve všech čtyřech větvích Einsteinova kříže.

Díky tomuto unikátnímu vzorku dat jsme mohli ukázat, že záření s nejvyšší energií přichází z centrální oblasti (do jednoho světelného dne od centra). Co je ale důležitější, množství energie s rostoucí vzdáleností od středu klesá téměř přesně v souladu s teoretickou předpovědí,“ říká Alexander Eigenbrod, který provedl kompletní analýzu dat.

Použití makro- i mikro-lensingu ve spojení s obřím okem dalekohledu VLT umožnilo astronomům zkoumat oblast, jejíž velikost na obloze se pohybuje v řádu miliontin obloukové vteřiny. To zhruba odpovídá pozorování, při kterém pouhým okem sledujete desetikorunu na vzdálenost 5 milionů km (tedy asi 13násobku vzdálenosti Země – Měsíc). „Jde o 1000krát lepší rozlišení, než může být dosaženo za použití klasických technik a nejlepších existujících dalekohledů,“ dodává Courbin.

Měření rozložení teplot v okolí černé díry je unikátní. Existují různé teorie, které popisují formování kvazarů a způsoby, jak získávají energii. Každá z nich předpovídá jiný profil. Až dosud však chybělo přímé a nezávislé pozorování, které by umožnilo potvrdit nebo vyvrátit tyto teoretické modely; obzvláště to platí v případě centrálních oblastí kvasarů. „Jedná se o první přesné, přímé a na modelu nezávislé měření velikosti akrečního disku kvasaru,“ uzavírá člen týmu Georges Meylan.

Poznámky

Located in the centre of most galaxies, including our own Milky Way, supermassive black holes attract and swallow everything in their close vicinity. This infall of matter onto the black hole is highly energetic and produces so much radiation that the phenomenon is seen even from the most remote parts of the Universe. The luminous phenomenon associated with a supermassive black hole is known as a quasar.

So far, very little is known about the physical processes that continuously fuel the quasar for millions of years. The region where matter is accreted, in the form of a disc where matter spirals and falls onto the supermassive black hole, is very small: a few light-days or light-months at most. As quasars are also very distant, millions or billions of light-years away, any detailed study of their central accretion disc is well beyond the direct reach of the best existing telescopes, even the Hubble Space Telescope or the ESO VLT interferometer.

Nature has, however, provided astronomers with a tool to circumvent the problem: natural magnifying lenses. The physical principle behind a gravitational lens (also known as a cosmic mirage) has been known since 1916 as a consequence of Albert Einstein's theory of general relativity. The gravitational field of a massive object curves the local geometry of the Universe, so light-rays passing close to the object are bent (just as a "straight line" on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface).

Astronomers first observed this effect in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, roughly matching the prediction of Einstein's theory. The effect is due to the gravitational field of the Sun, which deflects the photons of the background stars when they pass near the Sun on their way to us. This was the first confirmation of one of the predictions of the general relativity and it represented a milestone in physics.

In the 1930s, the Swiss astronomer Fritz Zwicky (1898—1974), working at Caltech, realised that the same effect may also happen far out in space where galaxies and large galaxy clusters may be compact and massive enough to bend the light from even more distant objects. However, it was four decades before his ideas were observationally confirmed when the first example of a cosmic mirage was discovered in 1979 (as two images of the same distant quasar).

Další informace

Eigenbrod, A., Courbin, F., Sluse, D., Meylan, G. & Agol, E. 2008, "Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross. I. Spectrophotometric monitoring with the VLT", Astronomy & Astrophysics, 480, 647

Eigenbrod, A., Courbin, F., Meylan, G., Agol, E., Anguita, T., Schmidt, R. W. & Wambsganss, J. 2008, "Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross. II. Energy profile of the accretion disk", Astronomy & Astrophysics, 490, 933

Složení týmu: Frédéric Courbin, Alexander Eigenbrod a Georges Meylan (Ecole Polytechnique Fédérale de Lausanne, Switzerland), Dominique Sluse, Robert Schmidt, Timo Anguita a Joachim Wambsganss (Astronomisches Rechen-Institut, Heidelberg, Germany) a Eric Agol (University of Washington, Seattle, USA).

Kontakty

Jiří Srba
překlad
Hvězdárna Valašské Meziříčí, ČR
Email: eson-czech@eso.org

Frédéric Courbin
EPFL
Lausanne, Switzerland
Tel.: +41 22 379 24 18
Email: frederic.courbin@epfl.ch

Alexander Eigenbrod
EPFL
Lausanne, Switzerland
Tel.: +41 22 379 24 21
Email: alexander.eigenbrod@epfl.ch

Georges Meylan
EPFL
Lausanne, Switzerland
Tel.: +41 22 379 24 25
Email: georges.meylan@epfl.ch

Joachim Wambsganss
Astronomisches Rechen-Institut
Heidelberg, Germany
Tel.: +49 6221 54 1800
Email: jkw@ari.uni-heidelberg.de

Eric Agol
University of Washington
Seattle, USA
Tel.: +1 206 543 71 06
Email: agol@astro.washington.edu

Henri Boffin
ESO
Garching, Germay
Tel.: +49 89 3200 6222
Email: hboffin@eso.org

Eric Agol
ESO
Garching, Germany
Tel.: +56 2 463 3123
Email: vrodrigu@eso.org

Connect with ESO on social media

Toto je překlad tiskové zprávy ESO eso0847. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.

O zprávě

Tiskové zpráva č.:eso0847cs
Legacy ID:PR 47/08
Jméno:Einstein Cross
Typ:Unspecified : Galaxy : Type : Gravitationally Lensed
Unspecified : Galaxy : Activity : AGN : Quasar
Facility:Very Large Telescope
Instruments:FORS1
Science data:2008A&A...490..933E
2008A&A...480..647E

Obrázky

The Einstein Cross
The Einstein Cross
pouze anglicky
The Einstein Cross
The Einstein Cross
pouze anglicky

Videa

Macro and microlensing
Macro and microlensing
pouze anglicky