Up close and personal with the Miniscule Extremely Large Telescope

How a test bench version of the world’s largest optical telescope is helping ESO engineers test how the ELT will function

29 January 2021
What you’ll discover in this blog post:
  • How the upcoming world’s largest optical telescope is scaled down to fit into a laboratory
  • How different components of the MELT (and the ELT) work together
  • How an optical setup is aiding the development of the ELT

In a laboratory at ESO headquarters, there is a setup of optics, lenses and mirrors aiding the development of the Extremely Large Telescope — the Miniscule ELT, otherwise known as the MELT. Set to test and validate key elements of the ELT, ESO’s upcoming flagship telescope, the MELT serves as a proving ground to learn valuable lessons for commissioning — setting up and operating — the ELT.

“The MELT has been built to fail and to learn from those failures ahead of the completion of the ELT,” says Carlos Diaz Cano, MELT software engineer and project manager.

The ELT will be the world’s largest optical and near-infrared telescope with a 39-metre main mirror, the largest of a five mirror setup, and is set to push the boundaries of astrophysical research. For such an ambitious project, it is useful to be able to test specific elements of the telescope and how they interact before it is operational. Scaling down the entirety of the ELT to fit in a lab bench barely six square-metres in area would be a near-impossible task. Instead the MELT emulates only specific components of the ELT with the light passed via four different mirrors connected in a “telescope optical path”.

Light reflects in five different mirrors in its journey through the ELT.
Credit: ESO/L. Calçada/ACe Consortium

MELT’s main mirror and control software

One of the highlight features of the ELT is its main mirror, M1, composed of 798 hexagonal segments, with each segment measuring 1.4 metres across and just 5 cm thick. The M1 analogue on the MELT is composed instead of 61 segments, in total measuring just 153 mm across. This analogue mirror was incorporated from a previous ESO experiment, the Active Phasing Experiment, which was done at ESO's Paranal Observatory and tested the control of segmented primary mirrors for the ELT. After this experiment returned from Paranal, the engineers at ESO headquarters incorporated adaptive optics and additional optical components. With a few additional changes in hardware and almost completely new software and electronic infrastructure, this system is now known as MELT.

"Sixty one segments are understandably easier to work with than 798, and give us an idea of the challenges we’ll face with the ELT"

“Sixty one segments are understandably easier to work with than 798, and give us an idea of the challenges we’ll face with the ELT,” says Pascaline Darré, optical engineer for the MELT. “But we have to bear in mind that the ELT will be different because it’s on another scale.”

While there are fewer segments on the MELT’s M1 analogue, there is still a substantial amount of work involved in operating them. Each segment needs to move independently to ensure perfect co-alignment of all the segments, enabling them to behave as a single larger mirror — for both the ELT and the MELT. The movement of these segments is managed by control software. An overarching challenge the MELT team are facing is the development and integration of control systems for the miniaturised telescope.

“The control system is the ‘glue’ that joins all the components together,” says Diaz Cano. “Every bug we fix now is time saved for the ELT in the future.”

The team has been integrating several control system software products developed to perform different functions on the ELT, to allow the different components on the emulated telescope to communicate with each other. In particular, they have been modernising the control system software to match standards for the ELT.

"Every bug we fix now is time saved for the ELT in the future."

“Aside from using the software for MELT, we plan to develop a set of software libraries which will actually be available for use on the ELT,” explains Diaz Cano.

The MELT’s other mirrors

On the ELT, M2 reflects the light from M1 to M3 allowing the light to continue on its path between mirrors before being captured by scientific instruments. Although MELT simulates the ELT, its optical design is not identical, and it does not have a M3 mirror. Instead, MELT’s M2 analogue is a special lens assembly that emulates the ELT's M2 and can also intentionally generate optical aberrations (such as astigmatism). These aberrations blur and distort images, allowing engineers to learn how to correct them on the ELT.

Next up is M4, a deformable mirror whose surface can be distorted and adapted to help correct for atmospheric turbulence and the vibration of the telescope itself, enabling sharp images to be captured. On the ELT, the adjustment of M4’s surface is controlled by 5352 actuators, ‘movers’ allowing the mirror to change shape. The real-time controller is responsible for adjusting these actuators so the shape of M4 can be tweaked up to 1000 times a second to compensate for atmospheric changes. The MELT’s M4 analogue has 277 actuators controlled by a real-time controller similar to the one which will be deployed on the ELT. With this the MELT team can test and validate what they call “offloading strategies”, for example to find ways in which M4 and the fifth mirror, M5, can work together to correct and align their positions and improve images.

The MELT team are testing ways in which mirrors can work together to correct and align their positions, which is key to high quality images.

M5 is a fast tip-tilt mirror and operates jointly with M4 as part of the ELT’s adaptive optics systems. Adaptive optics, which also operates on ESO’s Very Large Telescope, allows corrections for atmospheric turbulence and is key to producing sharp images from the ground. The MELT’s M5 analogue is also a fast tip-tilt mirror, albeit much smaller with a diameter of just 50.8 mm, and is the final component of the optical path emulated on the MELT.

The diagnostic path

The MELT’s telescope optical path emulates the path light will take on the ELT to capture scientific observations. The other half of the MELT’s optical setup contains the diagnostic optical path that helps check that the captured light is not distorted in the telescope, maintaining the quality of observations.

The diagnostic optical path emulates the Phasing and Diagnostic Station on the ELT whose primary goal is to ensure that M1 continues to act as one giant mirror by keeping the segments of M1 aligned to a precision of tens of nanometres. Changes in temperature and humidity mean M1 is expected to drift out of phase over time, so the Phasing and Diagnostic Station measures the shape of M1 and updates segment positions to maintain the optimum mirror shape and keep delivering clear and sharp images. These drifts are detected by wavefront sensors, which measure whether light reflected on different segments of M1 comes together in phase to ensure the telescope is working as intended.

“The diagnostic optical path is populated with different wavefront sensors which can test different phasing strategies. The different steps to get M1 phased are tested in order to validate the strategy for the ELT,” explains Darré.

"We are trying to put in place as much as possible for when the ELT is operational. There’s huge added value for the engineers commissioning the ELT if they are familiar with the challenges they may face."

Getting ready for the ELT

MELT is used to develop control strategies and to help validate software that will be used for the ELT and its diagnostic station once they are ready to go on-sky. A benefit of deploying these sensors on a test bench early on is that engineers can look for answers to technical questions such as, if a wavefront sensor stops working, is there a way to check M1 is still operating as intended? This means they will be able to work more effectively when the ELT launches.

“We are trying to put in place as much as possible for when the ELT is operational. There’s huge added value for the engineers working in commissioning the ELT if they are able to start using the software now, and are familiar with the technology and control challenges they may face down the line,” says Diaz Cano.

Together, the emulated telescope and diagnostic station make the Miniscule Extremely Large Telescope an invaluable tool for the development of the ELT. By repurposing many elements from previous experiments and test benches in ESO’s laboratories, the assembled MELT is successfully testing systems and components ready for the upcoming Extremely Large Telescope.

Numbers in this article

39 The diameter (in metres) of the M1 mirror in the ELT
61 Number of mirror segments on the M1 analogue on the MELT
153 The diameter (in millimetres) of the M1 analogue on the MELT
277 Number of actuators on the MELT’s M4 analogue
798 Number of mirror segments on the ELT’s M1 mirror

Biography Justin Tabbett

Justin Tabbett is a former science journalism intern at ESO. Before working at ESO, Justin completed an MSci in Physics with Industrial Experience from the University of Bristol, and spent a year working for ISIS Neutron and Muon Source and the Central Laser Facility as a Science Communicator.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.