Making a Stellar Baby

How and where the outflowing material around protostars originates

6 October 2017
What you’ll discover in this blog post:
  • New research into the processes of star formation
  • How the different components of a protostar’s environment interact
  • How ALMA helps us understand stellar evolution
Star formation is a bit like baking a cake: you need the right ingredients and the right conditions. Finding the right ingredients is easy; nebulae are full of gas and dust ready to be whipped up into young stars. But what remained a mystery in the theory of star formation is how the right conditions are obtained…until now. Thanks to research undertaken using some of the world’s most advanced telescopes, astronomers are starting to narrow down the specific circumstances necessary for stars to be born, which could change our understanding of the first steps of stellar evolution. Using the Atacama Large Millimeter/submillimeter Array (ALMA), a group of astronomers led by Felipe de Oliveira Alves from the Max Planck Institute for Extraterrestrial Physics has observed the environment around Young Stellar Objects (YSOs), the precursors to fully-fledged stars, for the first time. We talked to Felipe to learn more about their surprising results.

Q: To start with, why do we investigate star formation and what are the challenges involved in studying young stellar objects?

A: Our main interest when we study star formation is to understand our own cosmological history. We want to understand how protostellar objects like YSOs evolve to become stars, so we study clouds of gas and dust that may harbour these conditions.

But unlike researchers in a lab, observational astronomers have no control whatsoever over our samples. We only have access to one physical output from the star — its light — so we have to extract the star’s properties from its light at distinct wavelengths. Our goal is to find a self-consistent interpretation from what we see, which can be challenging given the variety of conditions found in the dusty interstellar medium.

Q: What were you trying to find out by studying young stellar objects?

A: Around the young stellar object is a disc of fast-moving material, which is surrounded by a much larger, slower-moving envelope of gas and dust. We know that one important condition for star formation is that the disc around a YSO must be rotating at a fairly slow speed in order for it to grow into an adult star. This means that it has to get rid of excess angular momentum — a measure of how much it is spinning. The winds within the dusty, gaseous layers around a star can help remove the angular momentum, but for a long time, we didn’t know how these winds actually interacted with the star’s environment — or where they came from!

Q: So what did you and your team observe?

A: We used ALMA to observe a YSO called BHB07-11 in the star-forming cloud Barnard 59, focusing on the gaseous envelope that surrounds the protostar. We wanted to pinpoint the launching site of the outflowing material — the winds — necessary to remove extra angular momentum from the YSO. To our surprise, a lot of this outflow launches where the edge of the disc meets the inner part of the surrounding envelope, much further out than expected.

These new results will help us better understand how protostars grow into stars

Our observations also showed that the place where the outflows leave the disc coincides with where the inflows enter. Incidentally, at this area, the magnetic field lines of the protostar strengthen. Simulations have looked at how magnetic field lines can be dragged into the inner envelope by the inflowing material. This causes the magnetic field lines to be pinched at these “infall landing sites”. Our observations confirm this effect, connecting the protostar’s magnetic field to the source that drives these winds. It’s implied that the pinched magnetic fields are large, since they create outflows, and are crucial for redistributing the angular momentum of the YSO and forming a stable circumstellar disc. Previously, we thought these winds only happen on the disc’s surface, not outside of the disc. These new results will help us better understand how protostars grow into stars.

This image of the disc and envelope around a protostar, taken in radio wavelengths with ALMA, is overlaid with carbon molecular lines denoting the outflowing material. The material is ejected from the edge of the disc, seen here roughly at the edge the yellow area. Since the wavelength of the carbon emission shifts slightly if it moves away from or towards an observer, astronomers could find the velocity of the material. The left image is material moving towards us while the right panel shows material moving away from us.
Credit: F. O. Alves/MPE

Q: What were your initial thoughts when your team discovered that the outflow was coming from the surrounding envelope?

Only with ALMA could we make these studies

A: We were astonished! The region we studied between the envelope and disc had been previously investigated by other teams at a lower resolution, who showed a large outflow being powered by a young stellar object, but it was hard to pinpoint where the outflow originated. Only with ALMA could we make these studies.

Q: What exactly is the relationship between the outflows, inflows, and the magnetic field?

The outflows, inflows, and magnetic field are all essential ingredients to keep the YSOs dynamically stable. In the same way that a spinning ballet dancer increases their speed of rotation when they pull their arms close to their body, material collapsing on itself from a rotating cloud will also speed up sharply, thanks to the conservation of angular momentum. However, this increase in rotation speed could lead to unstable systems. For a star to form, the outflows and magnetic fields must work together to help the system redistribute its angular momentum. The outflows driven by the magnetic field are key to such a process.

Q: Why is ALMA so well-suited to studying YSOs?

YSOs are embedded in dense cores of dust and gas. This makes them impossible to observe in visible light and sometimes near-infrared wavelengths because the light emitted by the protostar is absorbed by the surrounding cloud. The ALMA band 6 receivers cover a frequency range that is very sensitive to the wavelengths emitted by cold interstellar dust, so we can study the properties of these cores, observing chemical signatures and studying their movements — at the highest level of detail level ever achieved at such frequencies!

ALMA is finally giving us the sensitivity and resolution to obtain sharp images of discs around YSOs. Not only have our results revealed where the outflows originate, but they are also the equivalent of a prenatal ultrasound image for a baby star, where we can see spiral structures — only visible thanks to ALMA’s fantastic sensitivity. We now have the facilities to observe and investigate the physical conditions in which a dense core becomes a stellar system, which is incredibly amazing for the future of protostellar research.

Numbers in this article

6 The band number ALMA observed in (one of the ten)
44 Number of ALMA antenna used to find these outflows and inflows
66 Total number of available ALMA antennas

Biography Felipe de Oliveira Alves

Felipe de Oliveira Alves is a researcher at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany.
Email: falves@mpe.mpg.de

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.