Brown Dwarf Formation Hints at Billions of New Neighbours

Astronomer Koraljka Muzic tells her story of discovery

1 December 2017
What you’ll discover in this blog post:
  • The nature of brown dwarfs and how they form
  • How advanced technology can observe dim objects like brown dwarfs
  • What it’s like to work at an astronomical observatory
Is it a star? Is it a planet? No, it’s a brown dwarf! More massive than Jupiter but smaller than the Sun, these fascinating astronomical objects are difficult to observe due to their dim nature, but studying them can tell us a lot about our Universe. In this blog post, astronomer and brown dwarf expert Koraljka Muzic discusses her latest research, which led her to discover something surprising about how brown dwarfs form.

Q: Firstly, what exactly is a brown dwarf, and why did you want to study them in this context?

The big question is: are brown dwarfs formed like stars or like planets?

A: For a long time, people have known about two well-separated classes of objects — stars and planets. Brown dwarfs are kind of a missing link between them: in terms of mass, they are somewhere between stars and planets. The transition from a brown dwarf to a star happens at 0.075 solar masses (around 80 times the mass of Jupiter), but setting a boundary between brown dwarfs and planets isn’t so straightforward. The smallest brown dwarfs discovered so far are about five times as massive as Jupiter, similar to some giant exoplanets. But these brown dwarfs don’t orbit any star; we call them free-floating planetary-mass objects.

For us, the big question is: are brown dwarfs formed like stars or like planets? While most of the evidence today points to a star-like formation scenario for more massive brown dwarfs, we’re still questioning how low-mass brown dwarfs form; they could be formed in a similar way as giant planets.

Artist’s impression of the relative sizes of brown dwarfs compared to stars and gas giant planets. Using Jupiter as a comparison, the brown dwarf is 10 times more massive, the low-mass star is 100 times more massive, and the Sun is approximately 1000 times more massive.
Credit: Carnegie Institution for Science

Q. The existence of brown dwarfs was only confirmed about 20 years ago. How far has our knowledge of them developed since that discovery?

A: Quite a bit! Brown dwarfs have existed in theory since the 1960s and were observed for the first time in the 1990s. Since then, we’ve discovered a few thousand of them with progressively cooler effective temperatures, leading to the definition of new stellar types.

But observing brown dwarfs is challenging because they’re very faint and very cool, which means we’re always pushing the limits of instrument sensitivity. Our progress is strongly linked to technological development — firstly, we saw this with the arrival of infrared instrumentation that could study cool, young objects surrounded by dust. Nowadays, technological progress mostly involves building bigger mirrors on the ground and in space to detect fainter objects that are even less massive and more distant. The Milky Way contains billions of brown dwarfs, so there's still a long way to go!

Q: What’s our current understanding of how brown dwarfs form?

A: We think that massive brown dwarfs are formed like stars, through the gravitational collapse of molecular clouds. This collapse causes the temperature at the cloud’s core to soar, and at a few million degrees, hydrogen starts fusing into helium — a star has been born! But if the object is not massive enough, the collapse will stop before it reaches the hydrogen fusion temperature, and the result is a brown dwarf.

The key point for our research is that after gravitational collapse stops, the brown dwarf keeps cooling down and becoming fainter and fainter — so we want to study them while they're young and relatively bright. This is one of the reasons we looked for brown dwarfs in a star forming region: the young cluster RCW 38.

Q: What were the other reasons for choosing to observe RCW 38?

A: Several theories of brown dwarf formation predict that in places where lots of stars are packed in close together, more brown dwarfs form relative to stars. Brown dwarfs can also form close to massive stars — these stars blast a growing pre-stellar core with ionising radiation, evaporating their outer layers and leaving a small fragment behind: a brown dwarf. So in our survey SONYC (Substellar Objects in Nearby Young Clusters), we extensively studied brown dwarfs in several nearby star-forming regions in the near-infrared. These are excellent spots for studying young brown dwarfs, but overall they’re not very dense and they contain very few massive stars.

We wanted to observe a cluster that’s significantly different to these regions in order to compare different kinds of environments. That's how we decided on RCW 38 — it’s probably the most massive and densest cluster containing brown dwarfs detectable with our current technology. We went on to investigate RCW 38 using NACO on ESO’s Very Large Telescope.

The result was unexpected because it didn’t match theoretical predictions

Q: What did you find out? Were your results surprising?

A: We found that RCW 38 forms approximately one brown dwarf for every two newborn stars, which is very similar to what we found in less dense clusters — for example, in NGC 1333. NGC 1333 is about 10 times less dense than RCW 38 but the number of brown dwarfs formed compared to stars seems to be the same as in RCW 38. This allows us to estimate that the Milky Way contains at least between 25 to 100 billion brown dwarfs! And it’s likely that RCW 38 contains even more less massive, fainter brown dwarfs that we couldn’t spot.

The result was unexpected because it didn’t match theoretical predictions, and was especially surprising because previous observations hinted that the stellar density should affect the number ratio of brown dwarfs to stars...but in this case, it didn’t!

The reflection nebula NGC 1333, located in the constellation of Perseus.
Credit: X-ray: NASA/CXC/SAO/S.Wolk et al; Optical: DSS & NOAO/AURA/NSF; Infrared: NASA/JPL-Caltech

Q: What excites you most about your area of research?

A: I love thinking about the next steps we could take to give us new information about the properties of brown dwarfs, or details about their formation. I get really excited when a new opportunity arises to do something that we simply couldn’t have done before, like use a new instrument or a state-of-the-art technique. Recently, there was a call for science research proposals for the NASA/ESA/CSA James Webb Space Telescope (JWST). Thinking that in just a few years we might be able to use this fantastic new instrument to observe Jupiter-like free-floating objects in young clusters is just incredibly exciting!

Q: What are the next big questions in this area of astronomy?

A: One of the big questions I'm particularly interested in is how low a brown dwarf’s mass can be — is there a limit at which brown dwarfs stop forming? This could tell us more about how these objects are born. The lowest mass brown dwarfs we observed in young clusters are only about five times more massive than Jupiter, but to see lower masses we’ll have to wait for the next generation telescopes such as the JWST and ESO’s Extremely Large Telescope. Another big question is whether brown dwarfs can host planetary systems. Observations at longer wavelengths, in mid-infrared and submillimetre, reveal that they can be surrounded by discs. The lowest mass object observed to host a disc is OTS44, a young brown dwarf of only about 10–15 Jupiter masses. And, fun fact: when the VLT took the first image of an exoplanet in 2004, it was a planet that was orbiting a brown dwarf!

Q: To study RCW 38, you used the Very Large Telescope at ESO’s Paranal Observatory in Chile. What was it like to work at Paranal?

A: I worked at Paranal for three years as an ESO Fellow. Observatories in general are wonderful places, and although it can be pretty tiring, I love spending time at them because you glimpse the many complexities that lie behind astronomical observations. Building and running an observatory is an enormous effort, involving a huge number of people with different skills and expertise. It's like a giant mechanical clock where everything has to work in perfect order to ensure astronomers around the world get the best data possible.

On that note, I would like to give credit to all my colleagues who co-authored this research paper. This work would definitely not have been possible without the efforts of the entire team. A big thank you!

Numbers in this article

0.075 The transition from a brown dwarf to a star takes place at 0.075 solar masses
5 The smallest brown dwarf so far detected is five times more massive than Jupiter
10
RCW 38 is 10 times denser than NGC 1333

Biography Koraljka Muzic

Koraljka Muzic is a research scientist at CENTRA, University of Lisbon, Portugal. She obtained her PhD at the University of Cologne, Germany, and spent 3 years as an ESO Fellow in Chile, supporting the operations at Paranal. Her research focuses on brown dwarf and low-mass star formation.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.