Communiqué de presse
The Coming of Age of Adaptive Optics
How Ground-Based Astronomers Beat the Atmosphere
23 octobre 1995
Adaptive Optics (AO) is the new "wonder-weapon" in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence.
This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light.
The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers.
The Introduction of AO Techniques into Astronomy
The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis.
One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian scientists were invited to give presentations; this was made possible by a grant from the European Office of Aerospace Research and Development (EOARD)
Following the declassification of much AO technology and the introduction of AO into regular astronomical research several years ago, first at ESO with the "Come-On" system at La Silla [2], the fundamental importance of AO to ground-based astronomy has now become widely recognised. Since the last AO meeting that was held in Garching in August 1993, many groups in different countries have been developing such systems and have begun to use them.
As Fritz Merkle (Carl Zeiss, Jena) emphasized during a review talk, there has also been an interesting opening of new commercial and industrial AO applications, such as for high power lasers and for laser communications systems. However, the chief field of AO development and application remains astronomy and the vast majority of papers presented at the conference were concerned, directly or indirectly, with this science.
Towards Scientific and Technological Maturity
According to Martin Cullum (ESO), the organiser of this conference, it is apparent that a certain technological maturity has been reached during the past two years. However, it is also much more widely realised that it is not straightforward to produce good science, even with a high-performance AO system. A detailed characterization of the atmosphere, painstaking system calibrations and a lot of hard work during the astronomical observations and especially at the time of the reduction and interpretation of the voluminous datasets are necessary to obtain reliable results of high quality. Many of the presentations reflected this fact.
From the technical standpoint, highlights of the meeting included the significant progress that was reported in the development of adaptive secondary mirrors for the upgrade of the Multi-Mirror-Telescope (MMT) in Arizona, the initial tests of the laser guide-star AO system installed on the Lick 3-metre telescope in California, as well as the development of an advanced visible-light AO system for satellite reconnaissance and astronomy on Mt. Haleakala, Hawaii.
On the scientific side, an overview of the adaptive optics observations that have been carried out with ESO's Come-On-Plus AO system at the 3.6-metre telescope on La Silla during the first 4 years of operation was given by Pierre Lena (Paris Observatory) and forcefully illustrated the power of adaptive optics techniques in astronomy.
Impressive recent results were also presented by Bernhard Brandl and collaborators (Max-Planck-Institute for Extraterrestrial Physics, Garching) on the starburst cluster R136, that is located at the centre of the 30 Doradus region in the Large Magellanic Cloud. This was especially interesting, because the scientific results were obtained by combining high-resolution optical images from the Hubble Space Telescope with diffraction-limited infrared images from the Come-On-Plus system.
Without either one of these data sources, the exciting, final results could not have been obtained. They include a very thorough characterization of the stellar types in this extremely young cluster whose age is apparently only a few million years, as well as a detailed description of its dynamical state.
This demonstrates once again that, far from being competitors, ground-based AO facilities and space instruments are highly complementary. This perhaps provides an insight into the direction modern astronomy is developing.
Adaptive Optics at ESO
It is now more than five years since the first AO system, developed in collaboration with institutes in France, was installed at the 3.6-metre telescope at La Silla. Since then, much experience has been gained and the state-of the-art ADONIS/Come-On-Plus AO instrumental constellation is now regularly used by visiting astronomers. It employs a flexible silicon-mirror that is supported by 52 computer-controlled supports. The mirror changes its shape one hundred times per second, allowing to achieve very nearly the theoretical image sharpness in the mid-infrared wavelength region. Closer to the visible spectral region, images have been obtained at wavelength 1.5 microns which are only 0.12 arcseconds wide.
Under the leadership of Norbert Hubin at the ESO Headquarters in Garching, a team of astronomers and engineers is now in the process of designing the Nasmyth Adaptive Optics System (NAOS) that will be used at the Very Large Telescope (VLT). It will use a mirror with about 250 supports. Following testing in the second half of 1998, it is expected that the first NAOS device will be mounted on the first 8.2-metre VLT unit telescope in early 1999.
Notes
[1] The Topical Meeting on Adaptive Optics sponsored by the Optical Society of America and the European Southern Observatory was held on the premises of the Munich Technical University in Garching, on October 2--6, 1995.
[2] See eso8906 of 24 October 1989 and eso9005 of 25 May 1990.
A propos du communiqué de presse
Communiqué de presse N°: | eso9527 |
Legacy ID: | PR 12/95 |
Nom: | Adaptive Optics, Conference |
Type: | Unspecified : Technology : Observatory |
Facility: | Other |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.