Communiqué de presse
Les astronomes révèlent l’origine interstellaire de l’une des briques du Vivant
ALMA et Rosetta cartographient le parcours du phosphore
15 janvier 2020
Présent au sein de notre ADN et de nos membranes cellulaires, le phosphore est un élément essentiel à la vie telle que nous la connaissons. Toutefois, les modalités de son arrivée sur la Terre primitive demeurent inconnues. Les astronomes sont parvenus à retracer le parcours du phosphore depuis les régions de formation stellaire jusqu’aux comètes en combinant les données acquises par le réseau ALMA et la sonde Rosetta de l’Agence Spatiale Européenne. Leur travail de recherche révèle le site de production des molécules contenant du phosphore, leur transport cométaire ainsi que le rôle crucial joué par une molécule particulière dans l’apparition de la vie sur notre planète.
“La vie est apparue sur Terre voici quelque 4 milliards d’années. Les processus qui en sont à l’origine demeurent toutefois aujourd’hui encore méconnus” précise Victor Rivilla, auteur principal d’une nouvelle étude publiée ce jour au sein de la revue Monthly Notices of the Royal Astronomical Society. Les nouveaux résultats obtenus par le Vaste Réseau (Sub-)Millimétrique de l’Atacama (ALMA), dont l’Observatoire Européen Austral (ESO) est partenaire, et par l’instrument ROSINA embarqué sur la sonde Rosetta, montrent que le monoxyde de phosphore constitue un élément essentiel du puzzle de l’origine de la vie.
La résolution d’ALMA a permis d’examiner en détail la région de formation stellaire baptisée AFGL 5142. Les astronomes ont donc pu localiser le site de production des molécules phosphorées tel le monoxyde de phosphore. De nouvelles étoiles et leurs cortèges planétaires se forment au sein de nuages de gaz et de poussière semblables aux nuages interstellaires. Ces derniers constituent donc les sites de recherche privilégiés des éléments constitutifs de la vie.
Les observations d’ALMA ont montré que la création de molécules phosphorées accompagne la formation d’étoiles massives. Les flux de gaz issus des jeunes étoiles massives créent des cavités au sein des nuages interstellaires. Sous les effets combinés des chocs et du rayonnement en provenance de la jeune étoile, des molécules contenant du phosphore se forment sur les parois de ces cavités – en particulier le monoxyde de phosphore, la molécule phosphorée la plus abondante sur ces sites.
Après avoir recherché cette molécule au sein de diverses régions stellaires au moyen d’ALMA, l’équipe européenne s’est focalisée sur un objet du Système Solaire : la désormais célèbre comète 67P/Churyumov–Gerasimenko. L’idée était de suivre la trace de ces composés phosphorés. Si les parois de la cavité s’effondrent pour donner lieu à une étoile – de faible masse telle le Soleil en l’occurrence, le monoxyde de phosphore est susceptible de geler et de se retrouver piégé au sein de grains de poussière glacés qui demeurent en périphérie de la nouvelle étoile. Avant même que l’étoile ne soit complètement formée, ces grains de poussière s’agglutinent et se constituent en cailloux, en rochers, et finalement en comètes, qui deviennent des vecteurs de monoxyde de phosphore.
L’instrument ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) embarqué à bord de la sonde ROSETTA a collecté, deux années durant, des données concernant 67P. A l’époque de la mission, ces données avaient révélé la présence de phosphore. Toutefois, les astronomes ignoraient la molécule ayant contribué à son acheminement sur la comète. Kathrin Altwegg, la scientifique responsable de l’instrument ROSINA, par ailleurs contributrice de cette nouvelle étude, a émis une hypothèse concernant cette molécule de transport après avoir été approchée lors d’une conférence par un astronome étudiant les régions de formation stellaires au moyen d’ALMA : “Elle a dit que le monoxyde de phosphore pourrait être un excellent candidat, alors j’ai ré-examiné nos données et déniché sa trace !”
Cette première détection de monoxyde de phosphore sur une comète permet d’établir une relation entre les régions de formation stellaire, sites de production de la molécule, et la Terre.
“La combinaison des données d’ALMA et de ROSINA a révélé une sorte de fil conducteur chimique durant tout le processus de formation stellaire, dans lequel le monoxyde de phosphore joue un rôle essentiel” précise Victor Rivilla, chercheur à l’Observatoire d’Astrophysique d’Arcetri de l’INAF, l’Institut National d’Astrophysique en Italie.
“Le phosphore est un élément essentiel à la vie telle que nous la connaissons” ajoute Kathrin Altwegg. “Les comètes ont fort probablement acheminé de vastes quantités de composés organiques jusqu’à la Terre. Le monoxyde de phosphore découvert au sein de la comète 67P renforce le lien entre les comètes et la vie sur Terre.”
La collaboration entre astronomes a permis de documenter les étapes de ce parcours. “La détection du monoxyde de phosphore a été rendue possible grâce à un échange interdisciplinaire entre les télescopes au sol et les instruments spatiaux”, précise Kathrin Altwegg.
Leonardo Testi, astronome à l’ESO et Directeur des Opérations d’ALMA, conclut ainsi : “Comprendre nos origines, en particulier la fréquence des conditions chimiques favorables à l’émergence de la vie, constitue un sujet d’étude majeur de l’astophysique moderne. Tandis que l’ESO et ALMA se focalisent sur l’observation des molécules composant les jeunes systèmes planétaires distants, l’ESA, au travers de ses missions spatiales telle Rosetta, effectue l’inventaire direct des espèces chimiques présentes au sein de notre Système Solaire. La synergie entre les principales installations terrestres et les sondes spatiales, au travers de la collaboration entre l’ESO et l’ESA, constitue un atout majeur pour les chercheurs européens et permet des découvertes révolutionnaires telle celle dont il est question au sein de cet article.”
Plus d'informations
Ce travail de recherche a fait l’objet d’un article à paraître au sein de la revue Monthly Notices of the Royal Astronomical Society.
L’équipe est composée de V. M. Rivilla (INAF-Observatoire d’Astrophysique d’Arcetri, Florence, Italie [INAF-OAA]), M. N. Drozdovskaya (Centre d’Etude de l’Espace et de l’Habitabilité, Université de Bern, Suisse [CSH]), K. Altwegg (Institut de Physique, Université de Bern, Suisse), P. Caselli (Institut Max Planck de Physique Extraterrestre, Garching, Allemagne), M. T. Beltrán (INAF-OAA), F. Fontani (INAF-OAA), F.F.S. van der Tak (SRON Institut Néerlandais de Recherche Spatiale, et Institut d’Astronomie Kapteyn, Université de Groningen, Pays-Bas), R. Cesaroni (INAF-OAA), A. Vasyunin (Université Fédérale de l’Oural, Ekaterinburg, Russie, et Université des Sciences Appliquées de Ventspils, Latvia), M. Rubin (CSH), F. Lique (LOMC-UMR, CNRS–Université du Havre), S. Marinakis (Université de Londres Est, et Université Queen Mary de Londres, Royaume-Uni), L. Testi (INAF-OAA, ESO Garching, et Cluster d’Excellence “Universe”, Allemagne), et l’équipe ROSINA (H. Balsiger, J. J. Berthelier, J. De Keyser, B. Fiethe, S. A. Fuselier, S. Gasc, T. I. Gombosi, T. Sémon, C. -y. Tzou).
Le Vaste Réseau (Sub-)Millimétrique de l’Atacama (ALMA), une installation astronomique internationale, est le fruit d’un partenariat entre l'ESO, la U.S. National Science Foundation (NSF) et le National Institutes of Natural Sciences (NINS) du Japon en coopération avec la République du Chili. ALMA est financé par l'Observatoire Européen Austral (ESO) pour le compte de ses Etats membres, la NSF en coopération avec le National Research Council du Canada (NRC), le National Science Council of Tawain (NSC) et le NINS en coopération avec l’Academia Sinica (AS) à Taiwan et le Korea Astronomy and Space Science Institute (KASI). La construction et la gestion d'ALMA sont supervisées par l'ESO pour le compte de ses Etats membres, par le National Radio Astronomy Observatory (NRAO) dirigé par Associated Universities, Inc (AUI) en Amérique du Nord, et par le National Astronomical Observatory of Japan (NAOJ) pour l'Asie de l'Est. L’Observatoire commun ALMA (JAO pour Joint ALMA Observatory) apporte un leadership et un management unifiés pour la construction, la mise en service et l’exploitation d’ALMA.
L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 16 pays : l'Allemagne, l'Autriche, la Belgique, le Danemark, l'Espagne, la Finlande, la France, l’Irlande, l'Italie, les Pays-Bas, la Pologne, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est l'un des plus grands télescopes conçus exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope géant (ELT pour Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'ELT sera « l'œil le plus grand au monde tourné vers le ciel ».
Liens
Contacts
Víctor Rivilla
INAF Arcetri Astrophysical Observatory
Florence, Italy
Tél: +39 055 2752 319
Courriel: rivilla@arcetri.astro.it
Kathrin Altwegg
University of Bern
Bern, Switzerland
Tél: +41 31 631 44 20
Courriel: kathrin.altwegg@space.unibe.ch
Leonardo Testi
European Southern Observatory
Garching bei München, Germany
Tél: +49 89 3200 6541
Courriel: ltesti@eso.org
Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tél: +49 89 3200 6670
Mobile: +49 151 241 664 00
Courriel: pio@eso.org
Rodrigo Alvarez (contact presse pour la Belgique)
Réseau de diffusion scientifique de l'ESO
et Planetarium, Royal Observatory of Belgium
Tél: +32-2-474 70 50
Courriel: eson-belgium@eso.org
A propos du communiqué de presse
Communiqué de presse N°: | eso2001fr-be |
Nom: | 67P/Churyumov-Gerasimenko, AFGL 5142 |
Type: | Solar System : Interplanetary Body : Comet Milky Way : Nebula : Type : Star Formation |
Facility: | Atacama Large Millimeter/submillimeter Array |
Science data: | 2020MNRAS.492.1180R |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.