Making Laser Guide Stars Even Brighter

ESO physicist Domenico Bonaccini Calia tells us about newly-developed laser technology

20 April 2018
What you’ll discover in this blog post:
  • Why adaptive optics systems are vital to modern astronomy
  • What ESO is doing on the frontline of laser guide star research
  • How such systems can be applied in upcoming telescope projects like the ELT
Scheduled for first light in the 2020s, a powerful new class of giant telescopes will study the Universe in more detail than ever before — as long as their adaptive optics systems can sharpen their view. ESO’s Laser Systems group is currently undertaking field tests with a specialised laser at the Observatorio del Roque de los Muchachos, at La Palma on the Canary Islands. One of their goals is to make laser guide stars even brighter for large and extremely large telescopes, such as ESO’s ELT and the Giant Magellan Telescope. To find out more, we spoke to Domenico Bonaccini Calia, a physicist from ESO’s Laser Systems Department with over 20 years of experience.

Q: Domenico, could you briefly explain why laser guide star systems are important to astronomers?

A: Laser guide stars are used together with adaptive optics, the technology that helps astronomers to compensate for the atmospheric turbulence that affects the images of ground-based observations. An artificial guide star is produced by shining a powerful laser into the sky and exciting sodium atoms in the mesosphere (about 90 kilometres up in the atmosphere). This “star” acts as a reference point that allows adaptive optics to measure and compensate for the turbulence. This means that instruments can create crisp images of astronomical objects as sharp as if the telescope were in space, which is a tremendous advantage.

Q: What kinds of laser guide star systems does ESO currently employ on its telescope?

A: Our most advanced lasers have been the outcome of ESO internal research and development, which went on to be patented and engineered by two of our industrial partners, TOPTICA Photonics and MPB Communications. We’ve worked closely with these two partners over the past years to develop the final, extremely well-engineered, deployable laser, starting from our prototyping work.

This is, for example, the type of laser system used on the Very Large Telescope’s cutting-edge Unit Telescope 4. The system consists of a specially-designed 22-watt laser, operating at a wavelength of 598 nanometres with an emission linewidth of about 0.000003 nanometres (equivalent to a frequency of 2 MHz). This creates a laser guide star that allows the adaptive optics system to measure the image distortion created by the turbulence of the atmosphere, 1000 times per second. From these measurements, the fast deformable mirror of the adaptive optics system can adjust its shape to correct for the distortions and hence make the images sharper.

Essentially, these are compact laser guide star units, where small, powerful lasers are combined with a telescope system that launches the beam — and this means that the modular unit can be mounted directly onto an existing telescope, to produce one laser guide star per module.

The laser is turn-key, can be remotely operated, and is rugged enough to endure the harsh conditions of the Atacama Desert

The TOPTICA–MPBC lasers are a great development and are becoming a standard for astronomical observatories — the laser is turn-key, can be remotely operated, and is rugged enough to endure the harsh conditions such as temperature variations and the shigh altitude in the Atacama Desert in Chile. This is why we have also ordered them for ESO’s future Extremely Large Telescope. We received the prestigious Leibinger Innovation Award for this laser development with industry.

Q: Tell us about the new laser field tests being conducted by ESO now.

A: Along with institutes from ESO Member States, we are currently using the 20 watt Continuous Wave laser — which was produced during our development — to test various technologies related to laser guide star systems.

We are using the ESO Wendelstein Laser Guide Star Unit placed 40 metres from the 4.2-m William Herschel Telescope, at the Observatorio del Roque de los Muchachos, on the island of La Palma in Spain’s Canary Islands. The Wendelstein laser was developed at ESO’s laser labs in the years 2005–2009. It uses the same technologies as those licensed later in 2010 to TOPTICA and MPBC for the production of our engineered lasers: it uses a powerful 20 watt yellow beam (operating at 589 nm) to make sodium atoms in the Earth’s mesosphere glow, producing a laser guide star 90 km above ground.

View of the William Herschel Telescope (WHT), located at the Roque de los Muchachos Observatory, at an elevation of 2400 metres on the Canary Island of La Palma, Spain. The Wendelstein laser is located in the rectangular container to the left, 40 metres from the WHT. ESO’s laser field tests are done in the areas belonging to the Isaac Newton Group of telescopes (UK, ES, NL), which provide logistic and technical support to the team.
Credit: ESO/D.Bonaccini Calia

These tests will help us see the direction of technological developments needed for future, better laser guide star adaptive optics systems

The tests we are conducting now are strategic; they will help us see the direction of technological developments needed for future, better laser guide star adaptive optics systems — aimed specifically at the next generation of telescopes and instruments.

To conduct these tests, an even more powerful 589-nm laser is being built at our labs, in collaboration with industry.

One of the important goals of our research and development is to find a way to make the laser guide star even brighter. It is a very complex problem, linked with the mesospheric environment, atomic physics and quantum theory. In the past, we’ve done experiments on different parameters of the laser emission, and right now we’re working to experimentally evaluate a method known as “frequency chirping”. Essentially, this means that the laser’s emission frequency is changing repeatedly and periodically, to follow the recoil of the sodium atoms induced by their interaction with the laser.

From our models of sodium atom interactions, frequency chirping should improve the laser guide star’s brightness by a factor at least 1.5. This means more return photons for the same laser power.

Q: Can you explain why frequency chirping would increase the brightness?

A: The short answer is that frequency chirping optimises the number of sodium atoms that are able to interact with the laser photons. This means that the artificial “star” will shine brighter. The technique we want to apply is a modification of the atomic Doppler cooling, used in atomic physics.

The long answer is a bit more complex and depends on the detailed atomic physics of the sodium layer. Ready for some high-level physics?

When a sodium atom is hit by our laser beam, it absorbs and re-emits the photons, which causes a “recoil” of the atom. This means that each time it emits a photon toward us on the ground, the atom increases its relative velocity with respect to us. Because of the Doppler effect, its resonant frequencies seen from the ground shift by a tiny amount for each photon emission — 0.000000057 nm (equivalent to about 50 kHz). After a number of absorptions and re-emissions, the laser photons can no longer interact with that atom because the continued recoil has given the atom a resonant wavelength out of the 0.000003 nm laser line emission (about 2 MHz). This is called “spectral hole burning”.

The sodium atoms that have interacted with the laser have therefore acquired a different velocity. This means these atoms require a slightly different laser line wavelength to be excited again.

If we change the wavelength of the laser accordingly, we can actually follow the atoms into their next velocity class. Here, more atoms are present that weren’t interacting with the laser before, so the total number of atoms interacting with the laser increases — i.e., the laser guide star becomes brighter. This is a sort of snowplowing, varying the laser wavelength and using the atomic recoil, to move the recoiling atoms across different velocity classes and accumulating their number in the process.

For the mesosphere, we calculate that on average, the atomic collisions will reset the atomic velocities about once every 150–200 microseconds. So we derive that the laser photons wavelength should be varied by up to 0.000231 nm (200 MHz), in a sawtooth manner with a period of 0.142 milliseconds. So we shift (sweep) the laser emission line progressively 7000 times per second, going back and forth in the photons vibration frequencies. These values will have to be verified and optimised experimentally during the tests.

After testing in the lab at ESO, we will do sky tests at the La Palma site, where we’ll monitor the return flux — i.e., how bright the laser guide star is — while toggling between chirping and no chirping and exploring the optimal settings (in particular, changing the speed and range of the frequency shift).

For more in-depth details about how we make the lasers “chirp” in this way, please visit our webpage. It gets fairly technical!

Laser Guide star field tests at La Palma. Observatorio del Roque de los Muchachos. The 4.2m William Herschel Telescope Canary adaptive optics system was used together with the ESO laser guide star unit, to validate the foreseen ELT laser guide star baseline performance.
Credit: Obs.de Paris/Lisa Bardou, PhD student

Q: How will this new technology help us to improve observations, with telescopes from ESO and other institutions?

A: If we demonstrate that the laser frequency chirping gives us brighter laser guide stars, it could be implemented on new (or retrofitted in existing) lasers for laser guide stars. For the same laser power, we will obtain brighter laser guide stars!

This has benefits for the operation of all laser guide star Adaptive Optics systems existing or being built in the world, giving a stronger reference signal for adaptive optics, allowing operation of the instruments when observing closer to the horizon, or when the mesospheric sodium abundance (which varies) is at its minimum.

Q: Is there anything else you would like to add?

A: I thank you for this interview. I very much enjoy the work and the activities at ESO — I am honoured to be involved. I find it exciting to work on a mixture of innovative ideas, coming from the constant progress in photonics technologies, the knowledge of astrophysics instrumentation needs, and the experimental work.

None of this would have been possible without the dedicated, intelligent work of my colleagues in various departments, the contribution of brilliant students, and the encouraging support and trust of the ESO management across the years, up to today.

The success of our work at ESO for the adaptive optics community is also due to the collaborative spirit and professional engagement of research groups outside ESO. Among others, the Adaptive Optics groups at Durham University (UK), the Observatoire de Paris (F), the Instituto Astrofisico de Canarias (ES), the Max Planck Institut für Extraterrestrische Physik (D) and the Istituto Nazionale di Astrofisica (I), with the groups at Osservatorio di Roma and at Osservatorio di Arcetri.

Numbers in this article

0.000231

Range of the shift in wavelength (nanometres) during the laser frequency chirping

7000

Number of chirp wavelength range sweeps per second

40 The ESO Wendelstein Laser Guide Star Unit is placed at 40 metres from the 4.2-m William Herschel Telescope, at the Observatorio del Roque de los Muchachos.

598.1591

The exact wavelength (in nanometres) at which the lasers of the laser guide star systems operate

1000

Using an artificial star, the laser guide star system can measure the image distortion created by the turbulence of the atmosphere 1000 times per second.

Biography Domenico Bonaccini Calia

Domenico Bonaccini Calia has been working as a physicist at ESO for over 23 years. He obtained his Masters in physics at the University of Florence, Italy, then completed a PhD in astrophysics and a postdoc period at the Sac Peak National Solar Observatory in New Mexico, USA. On his return to Italy, Domenico held a staff position at the Arcetri Astrophysical Observatory, in Florence, where he created the adaptive optics group in 1990, before moving to ESO, Germany, in 1995.

At ESO he worked in the adaptive optics group and in 2000 he has created the Laser Guide Star Systems Department, serving as Head of Department until 2010. He has contributed to two laser guide star facilities now installed on the VLT, and is currently responsible for the laser guide star Systems Research and Development activities at ESO, under the Technology Development program.

D. Bonaccini Calia has received in 2017 the Optical Society of America Fellow Award, for the contribution to the progress of photonics in astronomical instrumentation.

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.