Messenger 182 | 2021

« Back to The Messenger home

ELT Instrumentation

3-6 (PDF)
Ramsay, S., Cirasuolo, M. et al.
Instrumentation for ESO’s Extremely Large Telescope

DOI:
10.18727/0722-6691/5214
ADS BibCode:
2021Msngr.182....3R
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Ramsay, S.; Cirasuolo, M.; Amico, P.; Bezawada, N.N.; Caillier, P.; Derie, F.; Dorn, R.; Egner, S.; George, E.; Gonté, F.; Hammersley, P.; Haupt, C.; Ives, D.; Jakob, G.; Kerber, F.; Mainieri, V.; Manescau, A.; Oberti, S.; Peroux, C.; Pfuhl, O.; Seemann, U.; Siebenmorgen, R.; Schmid, C.; Vernet, J.; The ESO ELT Programme and follow-up team
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(ESO) AK(ESO) AL(ESO) AM(ESO) AN(ESO) AO(ESO) AP(ESO) AQ(ESO) AR(ESO) AS(ESO) AT(ESO) AU(ESO) AV(ESO) AW(ESO) AX(ESO) AY(ESO)
Abstract:
Design and construction of the instruments for ESO’s Extremely Large Telescope (ELT) began in 2015. We present here a brief overview of the status of the ELT Instrumentation Plan. Dedicated articles on each instrument are presented elsewhere in this volume.
References:
De Zeeuw, T., Tamai, R. & Liske, J. 2014, The Messenger, 158, 3; Hammer, F., Kaper, L. & Dalton, G. 2010, The Messenger, 140, 36; Le Fèvre, O. et al. 2010, The Messenger, 140, 34; Morris, S. & Cuby, J.-G. 2010, The Messenger, 140, 22; Origlia, L., Oliva, E. & Maiolino, R. 2010, The Messenger, 140, 38; Pasquini, L. et al. 2010, The Messenger, 140, 20
7-12 (PDF)
Thatte, N., Tecza, M. et al.
HARMONI: the ELT’s First-Light Near-infrared and Visible Integral Field Spectrograph

DOI:
10.18727/0722-6691/5215
ADS BibCode:
2021Msngr.182....7T
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Thatte, N.; Tecza, M.; Schnetler, H.; Neichel, B.; Melotte, D.; Fusco, T.; Ferraro-Wood, V.; Clarke, F.; Bryson, I.; O’Brien, K.; Mateo, M.; Garcia Lorenzo, B.; Evans, C.; Bouché, N.; Arribas, S.; The HARMONI Consortium
AA(Department of Physics, University of Oxford, UK) AB(Department of Physics, University of Oxford, UK) AC(United Kingdom Astronomy Technology Centre (UKATC), Edinburgh, UK) AD(Laboratoire d’Astrophysique de Marseille (LAM), France) AE(United Kingdom Astronomy Technology Centre (UKATC), Edinburgh, UK) AF(Laboratoire d’Astrophysique de Marseille (LAM), France; Département d’Optique et Techniques Avancées (DOTA), Office National d’Etudes et de Recherches Aérospatial (ONERA), Paris, France) AG(Department of Physics, University of Oxford, UK) AH(Department of Physics, University of Oxford, UK) AI(United Kingdom Astronomy Technology Centre (UKATC), Edinburgh, UK) AJ(Physics Department, Durham University, UK) AK(Department of Astronomy, University of Michigan, USA) AL(Instituto de Astrofísica de Canarias (IAC) and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain) AM(United Kingdom Astronomy Technology Centre (UKATC), Edinburgh, UK) AN(Centre de Recherche Astrophysique de Lyon (CRAL), France) AO(Centro de Astrobiología – Instituto Nacional de Técnica Aeroespacial, Consejo Superior de Investigaciones Científicas (CAB-INTA/CSIC), Madrid, Spain)
Abstract:
The High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) is the visible and near-infrared (NIR), adaptive-optics-assisted, integral field spectrograph for ESO’s Extremely Large Telescope (ELT). It will have both a single-conjugate adaptive optics (SCAO) mode (using a single bright natural guide star) and a laser tomographic adaptive optics (LTAO) mode (using multiple laser guide stars), providing near diffraction-limited hyper-spectral imaging. A unique high-contrast adaptive optics with high performance and good sky coverage, respectively (AO) capability has recently been added for exoplanet characterisation. A large detector complement of eight HAWAII-4RG arrays, four choices of spaxel scale, and 11 grating choices with resolving powers ranging from R ~ 3000 to R ~ 17 000 make HARMONI a very versatile instrument that can cater to a wide range of observing programmes.
References:
Bounissou, S. et al. 2018, MNRAS, 478, 3189; Carlotti, A. et al. 2018, Proc. SPIE, 10702, 107029N Dubois, Y. et al. 2020, arXiv:2009.10578; Ferland, G. J. et al. 2017, Revista Mexicana de Astronomía y Astrofísica, 53, 385; Grisdale, K. et al. 2021, MNRAS, 501, 5517; N’Diaye, M. et al. 2016, Proc. SPIE, 9909, 99096S Richardson, M. et al. 2020, MNRAS, 498, 1891; Zieleniewski, S. et al. 2015, MNRAS, 453, 3754
13-16 (PDF)
Ciliegi, P., Agapito, G. et al.
MAORY: A Multi-conjugate Adaptive Optics RelaY for ELT

DOI:
10.18727/0722-6691/5216
ADS BibCode:
2021Msngr.182...13C
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Ciliegi, P.; Agapito, G.; Aliverti, M.; Annibali, F.; Arcidiacono, C.; Balestra, A.; Baruffolo, A.; Bergomi, M.; Bianco, A.; Bonaglia, M.; Busoni, L.; Cantiello, M.; Cascone, E.; Chauvin, G.; Chinellato, S.; Cianniello, V.; Correia, J.-J.; Cosentino, G.; Dall’Ora, M.; De Caprio, V.; Devaney, N.; Di Antonio, I.; Di Cianno, A.; Di Giammatteo, U.; D’Orazi, V.; Di Rico, G.; Dolci, M.; Doutè, S.; Eredia, C.; Farinato, J.; Esposito, S.; Fantinel, D.; Feautrier, P.; Foppiani, I.; Giro, E.; Gluck, L.; Golden, A.; Goncharov, A.; Grani, P.; Gullieuszik, M.; Haguenauer, P.; Hénault, F.; Hubert, Z.; Le Louran, M.; Magrin, D.; Maiorano, E.; Mannucci, F.; Malone, D.; Marafatto, L.; Moraux, E.; Munari, M.; Oberti, S.; Pariani, G.; Pettazzi, L.; Plantet, C.; Podio, L.; Portaluri, E.; Puglisi, A.; Ragazzoni, R.; Rakich, A.; Rabou, P.; Redaelli, E.; Redman, M.; Riva, M.; Rochat, S.; Rodeghiero, G.; Salasnich, B.; Saracco, P.; Sordo, R.; Spavone, M.; Sztefek, M.-H.; Valentini, A.; Vanzella, E.; Verinaud, C.; Xompero, M.; Zaggia, S.
AA(INAF, Italy) AB(INAF, Italy) AC(INAF, Italy) AD(INAF, Italy) AE(INAF, Italy) AF(INAF, Italy) AG(INAF, Italy) AH(INAF, Italy) AI(INAF, Italy) AJ(INAF, Italy) AK(INAF, Italy) AL(INAF, Italy) AM(INAF, Italy) AN(CNRS/INSU, Grenoble, France) AO(INAF, Italy) AP(INAF, Italy) AQ(CNRS/INSU, Grenoble, France) AR(INAF, Italy) AS(INAF, Italy) AT(INAF, Italy) AU(NUIG, Galway, Ireland) AV(INAF, Italy) AW(INAF, Italy) AX(INAF, Italy) AY(INAF, Italy) AZ(INAF, Italy) BA(INAF, Italy) BB(CNRS/INSU, Grenoble, France) BC(INAF, Italy) BD(INAF, Italy) BE(INAF, Italy) BF(INAF, Italy) BG(CNRS/INSU, Grenoble, France) BH(INAF, Italy) BI(INAF, Italy) BJ(CNRS/INSU, Grenoble, France) BK(NUIG, Galway, Ireland) BL(NUIG, Galway, Ireland) BM(INAF, Italy) BN(INAF, Italy) BO(ESO) BP(CNRS/INSU, Grenoble, France) BQ(CNRS/INSU, Grenoble, France) BR(ESO) BS(INAF, Italy) BT(INAF, Italy) BU(INAF, Italy) BV(NUIG, Galway, Ireland) BW(INAF, Italy) BX(CNRS/INSU, Grenoble, France) BY(INAF, Italy) BZ(ESO) CA(INAF, Italy) CB(ESO) CC(INAF, Italy) CD(INAF, Italy) CE(INAF, Italy) CF(INAF, Italy) CG(INAF, Italy) CH(INAF, Italy) CI(CNRS/INSU, Grenoble, France) CJ(INAF, Italy) CK(NUIG, Galway, Ireland) CL(INAF, Italy) CM(CNRS/INSU, Grenoble, France) CN(INAF, Italy) CO(INAF, Italy) CP(INAF, Italy) CQ(INAF, Italy) CR(INAF, Italy) CS(CNRS/INSU, Grenoble, France) CT(INAF, Italy) CU(INAF, Italy) CV(ESO) CW(INAF, Italy) CX(INAF, Italy)
Abstract:
The Multi-conjugate Adaptive Optics RelaY (MAORY) is the adaptive optics (AO) module for the Extremely Large Telescope (ELT) that will provide two gravity-invariant ports with the same optical quality for two different client instruments. It will enable high-angular-resolution observations in the near-infrared over a large field of view (~ 1 arcminute2) by real-time compensation of the wavefront distortions caused by atmospheric turbulence. Wavefront sensing is performed using laser and natural guide stars while the wavefront sensor compensation is performed by an adaptive deformable mirror (DM) in MAORY which works together with the telescope’s adaptive and tip-tilt mirrors M4 and M5 respectively.
References:
Davies, R. et al. 2018, Proc. SPIE, 10702, 107021S Vanzella, E. et al. 2019, MNRAS, 483, 3618; Rakich, A. & Rogers, R. J. 2020a, Proc. SPIE, 11548, 115480M Rakich, A. & Rogers, R. J. 2020b, Proc. SPIE, 11451, 114514J
17-21 (PDF)
Davies, R., Hörmann, V. et al.
MICADO: The Multi-Adaptive Optics Camera for Deep Observations

DOI:
10.18727/0722-6691/5217
ADS BibCode:
2021Msngr.182...17D
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Davies, R.; Hörmann, V.; Rabien, S.; Sturm, E.; Alves, J.; Clénet, Y.; Kotilainen, J.; Lang-Bardl, F.; Nicklas, H.; Pott, J.-U.; Tolstoy, E.; Vulcani, B.; The MICADO Consortium
AA(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AB(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AC(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AD(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AE(University of Vienna, Austria) AF(LESIA, Université PSL, CNRS, Sorbonne Université, Université de Paris, Observatoire de Paris, France) AG(FINCA, University of Turku, Finland) AH(Universitäts-Sternwarte, Munich, Germany) AI(Georg-August-Universität, Göttingen, Germany) AJ(Max Planck Institute for Astronomy, Heidelberg, Germany) AK(Kapteyn Institute, Groningen, the Netherlands) AL(INAF – Osservatorio di Padova, Italy)
Abstract:
The Multi-adaptive optics Imaging CamerA for Deep Observations (MICADO) will image a field of view of nearly 1 arcminute at the diffraction limit of the Extremely Large Telescope (ELT), making use of the adaptive optics correction provided by single-conjugate adaptive optics (SCAO) and multi-conjugate adaptive optics (MCAO). Its simple and robust design will yield an unprecedented combination of sensitivity and resolution across the field. This article outlines the characteristics of the observing modes offered and illustrates each of them with an astrophysical application. Potential users can explore their own ideas using the data simulator ScopeSim.
References:
Davies, R. et al. 2016, Proc. SPIE, 9908, 99081Z Davies, R. et al. 2018, Proc. SPIE, 10702, 107021S Pott, J.-U. et al. 2018, Proc. SPIE, 10702, 1070290
22-26 (PDF)
Brandl, B., Bettonvil, F. et al.
METIS: The Mid-infrared ELT Imager and Spectrograph

DOI:
10.18727/0722-6691/5218
ADS BibCode:
2021Msngr.182...22B
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Brandl, B.; Bettonvil, F.; van Boekel, R.; Glauser, A.; Quanz, S.; Absil, O.; Amorim, A.; Feldt, M.; Glasse, A.; Güdel, M.; Ho, P.; Labadie, L.; Meyer, M.; Pantin, E.; van Winckel, H.; The METIS Consortium
AA(Leiden University, the Netherlands; Faculty of Aerospace Engineering, TU Delft, the Netherlands) AB(Leiden University, the Netherlands) AC(Max Planck Institute for Astronomy, Heidelberg, Germany) AD(Department of Physics, ETH Zürich, Switzerland) AE(Department of Physics, ETH Zürich, Switzerland) AF(STAR Institute, Université de Liège, Belgium) AG(Faculdade de Ciencias da Universidade de Lisboa, Portugal) AH(Max Planck Institute for Astronomy, Heidelberg, Germany) AI(UK Astronomy Technology Centre, Edinburgh, UK) AJ(Department of Astrophysics, University of Vienna, Austria) AK(Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan) AL(I. Physikalisches Institut, Universität zu Köln, Germany) AM(Department of Astronomy, University of Michigan, Ann Arbor, USA) AN(CEA Saclay, IRFU, Gif-sur-Yvette, France) AO(Instituut voor Sterrenkunde, KU Leuven, Belgium)
Abstract:
The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3–13 µm). Its single-conjugate adaptive optics (SCAO) system will enable high contrast imaging and integral field unit (IFU) spectroscopy (R ~ 100 000) at the diffraction limit of the ELT. This article describes the science drivers, conceptual design, observing modes, and expected performance of METIS.
References:
Andrews, S. M. et al. 2018, ApJL, 869, L41; Anglada-Escudé, G. et al. 2016, Nature, 536, 437; Avenhaus, H. et al. 2018, ApJ, 863, 44; Banzatti, A. et al. 2017, ApJ, 834, 152; Birkby, J. L. et al. 2017, AJ, 153, 138; Brogi, M. et al. 2016, ApJ, 817, 106; Brown, J. M. et al. 2013, ApJ, 770, 94; Kasper, M. et al. 2019, The Messenger, 178, 5; Pascucci, I. et al. 2013, ApJ, 779, 178; Pinte, C. et al. 2018, ApJL, 860, L13; Quanz, S. P. et al. 2015, International Journal of Astrobiology, 14, 279; Smith, R. L. et al. 2009, ApJ, 701, 163; Teague, R. et al. 2018, ApJL, 860, L12
27-32 (PDF)
Marconi, A., Abreu, M. et al.
HIRES, the High-resolution Spectrograph for the ELT

DOI:
10.18727/0722-6691/5219
ADS BibCode:
2021Msngr.182...27M
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Marconi, A.; Abreu, M.; Adibekyan, V.; Aliverti, M.; Allende Prieto, C.; Amado, P.; Amate, M.; Artigau, E.; Augusto, S.; Barros, S.; Becerril, S.; Benneke, B.; Bergin, E.; Berio, P.; Bezawada, N.; Boisse, I.; Bonfils, X.; Bouchy, F.; Broeg, C.; Cabral, A.; Calvo-Ortega, R.; Canto Martins, B.L.; Chazelas, B.; Chiavassa, A.; Christensen, L.; Cirami, R.; Coretti, I.; Covino, S.; Cresci, G.; Cristiani, S.; Cunha Parro, V.; Cupani, G.; de Castro Leão, I.; Renan de Medeiros, J.; Furlande Souza, M.A.; Di Marcantonio, P.; Di Varano, I.; D’Odorico, V.; Doyon, R.; Drass, H.; Figueira, P.; Belen Fragoso, A.; Uldall Fynbo, J.P.; Gallo, E.; Genoni, M.; González Hernández, J.; Haehnelt, M.; Hlavacek-Larrondo, J.; Hughes, I.; Huke, P.; Humphrey, A.; Kjeldsen, H.; Korn, A.; Kouach, D.; Landoni, M.; Liske, J.; Lovis, C.; Lunney, D.; Maiolino, R.; Malo, L.; Marquart, T.; Martins, C.; Mason, E.; Molaro, P.; Monnier, J.; Monteiro, M.; Mordasini, C.; Morris, T.; Mucciarelli, A.; Murray, G.; Niedzielski, A.; Nunes, N.; Oliva, E.; Origlia, L.; Pallé, E.; Pariani, G.; Parr-Burman, P.; Peñate, J.; Pepe, F.; Pinna, E.; Piskunov, N.; Rasilla Piñeiro, J.L.; Rebolo, R.; Rees, P.; Reiners, A.; Riva, M.; Romano, D.; Rousseau, S.; Sanna, N.; Santos, N.; Sarajlic, M.; Shen, T.-C.; Sortino, F.; Sosnowska, D.; Sousa, S.; Stempels, E.; Strassmeier, K.; Tenegi, F.; Tozzi, A.; Udry, S.; Valenziano, L.; Vanzi, L.; Weber, M.; Woche, M.; Xompero, M.; Zackrisson, E.; Zapatero Osorio, M.R.
AA(Dipartimento di Fisica e Astronomia, Università di Firenze, Italy; INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) AB(Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Portugal) AC(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal) AD(INAF – Osservatorio Astronomico di Brera, Italy) AE(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofisica, Universidad de La Laguna, Tenerife, Spain) AF(Instituto de Astrofisica de Andalucia-CSIC Glorieta de la Astronomia, Granada, Spain) AG(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain) AH(Institut de Recherche sur les Exoplanètes and Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) AI(Instituto Mauá de Tecnologia, São Caetano do Sul, Brazil) AJ(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal) AK(Instituto de Astrofisica de Andalucia-CSIC Glorieta de la Astronomia, Granada, Spain) AL(Institut de Recherche sur les Exoplanètes and Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) AM(Department of Astronomy, University of Michigan, USA) AN(Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France) AO(ESO) AP(Aix Marseille University, CNRS, CNES, LAM, France) AQ(Université Grenoble Alpes, CNRS, IPAG, France) AR(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland; Aix Marseille University, CNRS, CNES, LAM, France) AS(Physikalisches Institut, University of Bern, Switzerland) AT(Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Portugal) AU(Instituto de Astrofisica de Andalucia-CSIC Glorieta de la Astronomia, Granada, Spain) AV(Board of Observational Astronomy, Federal University of Rio Grande do Norte, Brazil) AW(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) AX(Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France) AY(Cosmic Dawn Center, Niels Bohr Institute, Copenhagen University, Denmark) AZ(INAF – Osservatorio Astronomico di Trieste, Italy) BA(INAF – Osservatorio Astronomico di Trieste, Italy) BB(INAF – Osservatorio Astronomico di Brera, Italy) BC(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) BD(INAF – Osservatorio Astronomico di Trieste, Italy) BE(Instituto Mauá de Tecnologia, São Caetano do Sul, Brazil) BF(INAF – Osservatorio Astronomico di Trieste, Italy) BG(Board of Observational Astronomy, Federal University of Rio Grande do Norte, Brazil) BH(Board of Observational Astronomy, Federal University of Rio Grande do Norte, Brazil) BI(Instituto Mauá de Tecnologia, São Caetano do Sul, Brazil) BJ(INAF – Osservatorio Astronomico di Trieste, Italy) BK(Leibniz Institute for Astrophysics Potsdam, Germany) BL(INAF – Osservatorio Astronomico di Trieste, Italy) BM(Institut de Recherche sur les Exoplanètes and Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) BN(Centro de Astro Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Santiago, Chile) BO(ESO; Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal) BP(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain) BQ(Cosmic Dawn Center, Niels Bohr Institute, Copenhagen University, Denmark) BR(Department of Astronomy, University of Michigan, USA) BS(INAF – Osservatorio Astronomico di Brera, Italy) BT(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofisica, Universidad de La Laguna, Tenerife, Spain) BU(Kavli Institute for Cosmology and Institute of Astronomy, Cambridge, UK) BV(Département de physique, Université de Montréal, Canada) BW(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) BX(Institute for Astrophysics, Georg-August-Universität, Göttingen, Germany) BY(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal) BZ(Department of Physics and Astronomy, Aarhus University, Denmark) CA(Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Sweden) CB(CNRS, OMP, Université de Toulouse, France) CC(INAF – Osservatorio Astronomico di Brera, Italy) CD(Hamburger Sternwarte, Universität Hamburg, Germany) CE(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) CF(UK Astronomy Technology Centre, Edinburgh, UK) CG(Cavendish Laboratory, University of Cambridge, UK) CH(Institut de Recherche sur les Exoplanètes and Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) CI(Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Sweden) CJ(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal; Centro de Astrofísica da Universidade do Porto, Portugal) CK(INAF – Osservatorio Astronomico di Trieste, Italy) CL(INAF – Osservatorio Astronomico di Trieste, Italy) CM(Department of Astronomy, University of Michigan, USA) CN(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal) CO(Physikalisches Institut, University of Bern, Switzerland) CP(Centre for Advanced Instrumentation, Department of Physics, Durham University, UK) CQ(Dipartimento di Fisica e Astronomia, Università di Bologna, Italy) CR(Centre for Advanced Instrumentation, Department of Physics, Durham University, UK) CS(Institute of Astronomy, Nicolaus Copernicus University in Torun, Poland) CT(Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Portugal) CU(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) CV(INAF – Osservatorio di Astrofisica e Scienze dello Spazio di Bologna, Italy) CW(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofisica, Universidad de La Laguna, Tenerife, Spain) CX(INAF – Osservatorio Astronomico di Brera, Italy) CY(UK Astronomy Technology Centre, Edinburgh, UK) CZ(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain) DA(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) DB(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) DC(Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Sweden) DD(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain) DE(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofisica, Universidad de La Laguna, Tenerife, Spain) DF(UK Astronomy Technology Centre, Edinburgh, UK) DG(Institute for Astrophysics, Georg-August-Universität, Göttingen, Germany) DH(INAF – Osservatorio Astronomico di Brera, Italy) DI(INAF – Osservatorio di Astrofisica e Scienze dello Spazio di Bologna, Italy) DJ(Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France) DK(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) DL(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal) DM(Physikalisches Institut, University of Bern, Switzerland) DN(Centro de Astro Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile) DO(INAF – Osservatorio di Astrofisica e Scienze dello Spazio di Bologna, Italy) DP(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) DQ(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal) DR(Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Sweden) DS(Leibniz Institute for Astrophysics Potsdam, Germany) DT(Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain) DU(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) DV(Dèpartement d’Astronomie, Universitè de Geneve, Switzerland) DW(INAF – Osservatorio di Astrofisica e Scienze dello Spazio di Bologna, Italy) DX(Centro de Astro Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile) DY(Leibniz Institute for Astrophysics Potsdam, Germany) DZ(Leibniz Institute for Astrophysics Potsdam, Germany) EA(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) EB(Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Sweden) EC(Centro de Astrobiología (CSIC–INTA), Madrid, Spain)
Abstract:
HIRES will be the high-resolution spectrograph at optical and near-infrared (NIR) wavelengths for ESO’s Extremely Large Telescope (ELT). It will consist of three fibre-fed spectrographs providing a wavelength coverage of 0.4–1.8 µm (with a goal of 0.35–1.8 µm) at a spectral resolution of ~ 100 000. Fibre-feeding allows HIRES to have several interchangeable observing modes, including a single-conjugate adaptive optics (SCAO) module and a small diffraction-limited integral field unit in the NIR. It will therefore be able to operate in both seeing- and diffraction-limited modes. HIRES will address a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Some of the top science cases will be the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (Pop III), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
References:
Hawker, G. A. & Parry, I. R. 2019, MNRAS, 484, 4855; Liske, J. et al. 2008, MNRAS, 386, 1192; Maiolino, R. et al. 2013, arXiv:1310.3163; Marconi, A. et al. 2018, Proc. SPIE, 10702, 107021Y Origlia, L. et al. 2010, Proc. SPIE, 7735, 77352B Pasquini, L. et al. 2010, Proc. SPIE, 7735, 77352F Snellen, I. et al. 2013, ApJ, 764, 182; Snellen, I. et al. 2015, A&A, 576, A59
33-37 (PDF)
Hammer, F., Morris, S. et al.
MOSAIC on the ELT: High-multiplex Spectroscopy to Unravel the Physics of Stars and Galaxies from the Dark Ages to the Present Day

DOI:
10.18727/0722-6691/5220
ADS BibCode:
2021Msngr.182...33H
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Hammer, F.; Morris, S.; Cuby, J.-G.; Kaper, L.; Steinmetz, M.; Afonso, J.; Barbuy, B.; Bergin, E.; Finogenov, A.; Gallego, J.; Kassin, S.; Miller, C.; Östlin, G.; Pentericci, L.; Schaerer, D.; Ziegler, B.; Chemla, F.; Dalton, G.; De Frondat, F.; Evans, C.; Le Mignant, D.; Puech, M.; Rodrigues, M.; Sanchez-Janssen, R.; Taburet, S.; Tasca, L.; Yang, Y.; Zanchetta, S.; Dohlen, K.; Dubbeldam, M.; El Hadi, K.; Janssen, A.; Kelz, A.; Larrieu, M.; Lewis, I.; MacIntosh, M.; Morris, T.; Navarro, R.; Seifert, W.
AA(Paris Observatory, Paris Science et Lettres, CNRS, France) AB(Durham University, UK) AC(LAM, Université Aix-Marseille, CNRS, France) AD(University of Amsterdam, the Netherlands; NOVA, the Netherlands) AE(Leibniz-Institut für Astrophysik Potsdam, Germany) AF(IACE, Universidade de Lisboa, Portugal) AG(IAG, São Paulo, Brazil) AH(University of Michigan, USA) AI(University of Helsinki, Finland) AJ(Universidad Complutense de Madrid, Spain) AK(Space Telescope Science Institute, Baltimore, USA) AL(University of Michigan, USA) AM(Stockholm University, Sweden) AN(INAF – Osservatorio Astronomico di Roma, Italy) AO(University of Geneva, Switzerland) AP(Vienna University, Austria) AQ(Paris Observatory, Paris Science et Lettres, CNRS, France) AR(STFC-RALSPACE & University of Oxford, UK) AS(Paris Observatory, Paris Science et Lettres, CNRS, France) AT(UK Astronomy Technology Centre, STFC, Edinburgh, UK) AU(LAM, Université Aix-Marseille, CNRS, France) AV(Paris Observatory, Paris Science et Lettres, CNRS, France) AW(Paris Observatory, Paris Science et Lettres, CNRS, France) AX(UK Astronomy Technology Centre, STFC, Edinburgh, UK) AY(Paris Observatory, Paris Science et Lettres, CNRS, France) AZ(LAM, Université Aix-Marseille, CNRS, France) BA(Paris Observatory, Paris Science et Lettres, CNRS, France) BB(Paris Observatory, Paris Science et Lettres, CNRS, France) BC(LAM, Université Aix-Marseille, CNRS, France) BD(Durham University, UK) BE(LAM, Université Aix-Marseille, CNRS, France) BF(NOVA, the Netherlands) BG(Leibniz-Institut für Astrophysik Potsdam, Germany) BH(IRAP, Université de Toulouse, CNRS, France) BI(University of Oxford, UK) BJ(UK Astronomy Technology Centre, STFC, Edinburgh, UK) BK(Durham University, UK) BL(NOVA, the Netherlands) BM(Landessternwarte Königstuhl, Universität Heidelberg, Germany Heidelberg, Germany)
Abstract:
The powerful combination of the cutting-edge multi-object spectrograph named MOSAIC with the world largest visible/near-infrared telescope, ESO’s Extremely Large Telescope (ELT), will allow us to probe deeper into the Universe than ever before. MOSAIC is an extremely efficient instrument for obtaining spectra of the numerous faint sources in the Universe, including the very first galaxies and sources of cosmic reionisation. MOSAIC has a high multiplex in the near-infrared (NIR) and in the visible, and also has multi-integral field units (Multi-IFUs) in the NIR. It is therefore perfectly suited to carrying out an inventory of dark matter (from rotation curves) and baryons in the cool–warm gas phases in galactic haloes at z = 3–4. MOSAIC will enable detailed maps of the intergalactic medium at z = 3, the evolutionary history of dwarf galaxies during a Hubble time, and the chemistry as directly measured from stars up to several Mpc. It will also measure faint features in cluster gravitational lenses or in streams surrounding nearby galactic haloes. The preliminary design of MOSAIC is expected to begin next year and its level of readiness is already high, given the instrumental studies already carried out by the team.
References:
Bouwens, R. J. et al. 2015, ApJ, 803, 34; Bowler, R. A. A. et al. 2017, MNRAS, 466, 3612; Castellano, M. et al. 2016, ApJL, 818, L3; Chisholm, J. et al. 2018, A&A, 616, A30; Chisholm, J. et al. 2020, MNRAS, 498, 2554; Disseau, K. et al. 2014, Proc. SPIE, 9147, 914791; Evans, C. et al. 2013, arXiv:1303.0029; Evans, C. et al. 2015, arXiv:1501.04726; Evans, C. et al. 2018, The Messenger, 171, 47; Gazagnes, S. et al. 2018, A&A, 616, A29; Hammer, F. et al. 2009, A&A, 507, 1313; Hammer, F. et al. 2016, Proc. SPIE, 9908, 990824; Izotov, Y. et al. 2018, MNRAS, 478, 4851; Japelj, J. et al. 2019, A&A, 632, A94; Kassin, S. et al. 2012, ApJ, 758, 106; Martínez-Delgado, D. 2018, Proc. XIII Scientific Meeting of the Spanish Astronomical Society, 146; Mason, C. et al. 2018, ApJ, 856, 2; Mesinger, A. et al. 2015, MNRAS, 446, 566; Morris, S. M. et al. 2018, Proc. SPIE, 10702, 107021W Oesch, P. A. et al. 2015, ApJL, 804, L30; Plat, A. et al. 2019, MNRAS, 490, 978; Puech, M. et al. 2016, Proc. SPIE, 9908, 99089P Puech, M. et al. 2018, Proc. SPIE, 10702, 107028R Raiter, A., Schaerer, D. & Fosbury, R. A. E. 2010, A&A, 523, A64; Ramambason, L. et al. 2020, A&A, 644, A21; Rigby, J. et al. 2018, AJ, 155, 104; Spite, M. & Spite, F. 1982, Nature, 297, 483; Stark, D. P. 2016, ARAA, 54, 761; Steidel, C. C. et al. 2018, ApJ, 869, 123; Sullivan, P. W. & Simcoe, R. A. 2012, PASP, 124, 1336; Vanzella, E. et al. 2014, A&A, 569, A78; Voggel, K. et al. 2016, MNRAS, 460, 3384; Wang, B. et al. 2019, ApJ, 885, 57; Weilbacher, P. et al. 2020, A&A, 641, A28; Werk, J. K. et al. 2014, ApJ, 792, 8; Yang, Y. B. et al. 2012, Proc. SPIE, 8446, 84467Q
38-43 (PDF)
Kasper, M., Cerpa Urra, N. et al.
PCS — A Roadmap for Exoearth Imaging with the ELT

DOI:
10.18727/0722-6691/5221
ADS BibCode:
2021Msngr.182...38K
Section:
ELT Instrumentation
Author(s)/Affiliation(s):
Kasper, M.; Cerpa Urra, N.; Pathak, P.; Bonse, M.; Nousiainen, J.; Engler, B.; Heritier, C.T.; Kammerer, J.; Leveratto, S.; Rajani, C.; Bristow, P.; Le Louarn, M.; Madec, P.-Y.; Ströbele, S.; Verinaud, C.; Glauser, A.; Quanz, S.P.; Helin, T.; Keller, C.; Snik, F.; Boccaletti, A.; Chauvin, G.; Mouillet, D.; Kulcsár, C.; Raynaud, H.-F.
AA(ESO) AB(ESO) AC(ESO) AD(Institute for Particle Physics and Astrophysics, ETH Zürich, Switzerland) AE(Lappeenranta-Lahti University of Technology, Finland) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(Department of Computer Science, University of Helsinki, Finland) AK(ESO) AL(ESO) AM(ESO) AN(ESO) AO(ESO) AP(Institute for Particle Physics and Astrophysics, ETH Zürich, Switzerland) AQ(Institute for Particle Physics and Astrophysics, ETH Zürich, Switzerland) AR(Lappeenranta-Lahti University of Technology, Finland) AS(Leiden University, the Netherlands) AT(Leiden University, the Netherlands) AU(LESIA, Observatoire de Paris-Meudon, France) AV(Université Grenoble Alpes, CNRS, IPAG, France) AW(Université Grenoble Alpes, CNRS, IPAG, France) AX(Institut d’Optique, Université Paris-Saclay, France) AY(Institut d’Optique, Université Paris-Saclay, France)
Abstract:
The Planetary Camera and Spectrograph (PCS) for the Extremely Large Telescope (ELT) will be dedicated to detecting and characterising nearby exoplanets with sizes from sub-Neptune to Earth-size in the neighbourhood of the Sun. This goal is achieved by a combination of eXtreme Adaptive Optics (XAO), coronagraphy and spectroscopy. PCS will allow us not only to take images, but also to look for biosignatures such as molecular oxygen in the exoplanets’ atmospheres. This article describes the PCS primary science goals, the instrument concept and the research and development activities that will be carried out over the coming years.
References:
Anglada-Escudé, G. et al. 2016, Nature, 536, 437; Beuzit, J.-L. et al. 2019, A&A, 631, A155; Benneke, B. et al. 2019, ApJL, 887, L14; Boccaletti, A. et al. 2020, arXiv:2003.05714; Brandl, B. et al. 2018, Proc. SPIE, 10702, 107021U Dressing, C. D. & Charbonneau, D. 2015, ApJ, 807, 45; Díaz, R. F. et al. 2019, A&A, 625, A17; Dorn, R. J. et al. 2016, Proc. SPIE, 9908, 99080I Guyon, O. 2005, ApJ, 629, 592; Haffert, S. Y. et al. 2020, arXiv:2009.03529v1; Kammerer, J. & Quanz, S. P. 2018, A&A, 609, A4; Kopparapu, R. K. et al. 2018, ApJ, 856, 122; Kulcsár, C. et al. 2006, Opt. Express, 14, 7464; López-Morales, M. et al. 2019, AJ, 158, 24; Lovelock, J. E. 1965, Nature, 207, 568; Lovis, C. et al. 2017, A&A, 599, A16; Lozi, J. et al. 2018, Proc. SPIE, 10703, 1070359; Males, J. R. & Guyon, O. 2018, JATIS, 4, 019001; Males, J. R. et al. 2018, Proc. SPIE, 10703, 1070309; Mawet, D. et al. 2017, ApJ, 838, 92; Mawet, D. et al. 2018, Proc. SPIE, 10703, 1070306; Pollack, J. B. et al. 1996, Icarus, 124, 62; Por, E. H. & Haffert, S. Y. 2020, A&A, 635, A55; Quirrenbach, A. et al. 2018, Proc. SPIE, 10702, 107020W Ribas, I. et al. 2018, Nature, 563, 365; Snellen, I. et al. 2015, A&A, 576, A59; Tsiaras, A. et al. 2019, Nature Astronomy, 3, 1086; Vernet, E. et al. 2019, The Messenger, 178, 3; Vigan, A. et al. 2018, Proc. SPIE, 10702, 1070236; Wildi, F. et al. 2017, Proc. SPIE, 10400, 1040018; Zechmeister, M. et al. 2019, A&A, 627, A49

Astronomical Science

45-49 (PDF)
Mainieri, V., Circosta, C. et al.
SUPER — AGN Feedback at Cosmic Noon: a Multi-phase and Multi-scale Challenge

DOI:
10.18727/0722-6691/5222
ADS BibCode:
2021Msngr.182...45M
Section:
Astronomical Science
Author(s)/Affiliation(s):
Mainieri, V.; Circosta, C.; Kakkad, D.; Perna, M.; Vietri, G.; Bongiorno, A.; Brusa, M.; Carniani, S.; Cicone, C.; Civano, F.; Comastri, A.; Cresci, G.; Feruglio, C.; Fiore, F.; Georgakakis, A.; Harrison, C.; Husemann, B.; Lamastra, A.; Lamperti, I.; Lanzuisi, G.; Mannucci, F.; Marconi, A.; Menci, N.; Merloni, A.; Netzer, H.; Padovani, P.; Piconcelli, E.; Puglisi, A.; Salvato, M.; Scholtz, J.; Schramm, M.; Silverman, J.; Vignali, C.; Zamorani, G.; Zappacosta, L.
AA(ESO) AB(Department of Physics & Astronomy, University College London, UK) AC(ESO) AD(Departamento de Astrofísica, Centro de Astrobiología (CSIC–INTA), Madrid, Spain) AE(INAF IASF – Milano, Italy) AF(INAF – Osservatorio Astronomico di Roma, Italy) AG(Dipartimento di Fisica e Astronomia dell’Universitá degli Studi di Bologna, Italy; INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy) AH(Scuola Normale Superiore, Pisa, Italy) AI(Institute of Theoretical Astrophysics, University of Oslo, Norway) AJ(Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA) AK(INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy) AL(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) AM(INAF – Osservatorio Astronomico di Trieste, Italy) AN(INAF – Osservatorio Astronomico di Trieste, Italy) AO(Institute for Astronomy & Astrophysics, National Observatory of Athens, Greece) AP(School of Mathematics, Statistics and Physics, Newcastle University, UK) AQ(Max Planck Institute for Astronomy, Heidelberg, Germany) AR(INAF – Osservatorio Astronomico di Roma, Italy) AS(Department of Physics & Astronomy, University College London, UK; ESO) AT(INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy) AU(INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) AV(Dipartimento di Fisica e Astronomia, Università di Firenze, Italy; INAF – Osservatorio Astrofisico di Arcetri, Firenze, Italy) AW(INAF – Osservatorio Astronomico di Roma, Italy) AX(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AY(School of Physics and Astronomy, Tel-Aviv University, Israel) AZ(ESO) BA(INAF – Osservatorio Astronomico di Roma, Italy) BB(Centre for Extragalactic Astronomy, Department of Physics, Durham University, UK) BC(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BD(Onsala Space Observatory, Chalmers University of Technology, Sweden) BE(National Astronomical Observatory of Japan, Tokyo, Japan) BF(Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Japan; Department of Astronomy, School of Science, The University of Tokyo, Japan) BG(Dipartimento di Fisica e Astronomia dell’Universitá degli Studi di Bologna, Italy; INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy) BH(INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy) BI(INAF – Osservatorio Astronomico di Roma, Italy)
Abstract:
Theoretical models of galaxy evolution suggest that galaxy-wide outflows driven by active galactic nuclei (AGN), one of the so-called AGN-feedback mechanisms, are a fundamental process affecting the bulk of the baryons in the Universe. While the presence of such outflows out to kpc scales is now undisputed, their impact on the star formation, gas content and kinematics of the host galaxy is hotly debated. Here we report on the results from our Large Programme SUPER, which used the Spectrograph for INtegral Field Observations in the Near INfrared (SINFONI) on the Very Large Telescope (VLT) to carry out the first statistically sound high-spatial-resolution investigation of AGN outflows at z ~ 2, covering four orders of magnitude in AGN bolometric luminosity.
References:
Alexander, D. M. et al. 2010, MNRAS, 402, 2211; Begelman, M. C. 2003, Science, 300, 1898; Bischetti, M. et al. 2017, A&A, 598, A122; Brusa, M. et al. 2016, A&A, 588, A58; Carniani, S. et al. 2015, A&A, 580, A102; Cicone, C. et al. 2018, Nature Astronomy, 2, 176; Circosta, C. et al. 2018, A&A, 620, 82; Circosta, C. et al. 2021, A&A, in press, arXiv:2012.07965; Coil, A. L. et al. 2015, ApJ, 801, 35; Cresci, G. et al. 2015, ApJ, 799, 82; Davies, R. et al. 2020, MNRAS, 498, 4150; Faucher-Giguère, C.-A. & Quataert, E. 2012, MNRAS, 425, 605; Fiore, F. et al. 2017, A&A, 601, A143; Harrison, C. M. et al. 2012, MNRAS, 426, 1073; Harrison, C. M. et al. 2016, MNRAS, 456, 1195; Kakkad, D. et al. 2016, A&A, 592, A148; Kakkad, D. et al. 2020, A&A, 642, 147; Kewley, L. J. et al. 2013, ApJ, 774, 100; King, A. R. & Pounds, K. 2003, MNRAS, 345, 657; King, A. R. & Pounds, K. 2015, ARA&A, 53, 115; Menci, N. et al. 2008, ApJ, 686, 219; Nesvadba, N. P. H. et al. 2006, ApJ, 650, 693; Nesvadba, N. P. H. et al. 2007, A&A, 475, 145; Perna, M. et al. 2015, A&A, 583, A72; Silk, J. & Rees, M. J. 1998, A&A, 331, L1; Steidel, C. C. et al. 2014, ApJ, 795, 165; Vayner, A. et al. 2017, ApJ, 851, 126; Vietri, G. et al. 2018, A&A, 617, A81; Vietri, G. et al. 2020, A&A, 644, 175; Wylezalek, D. et al. 2020, MNRAS, 492, 4680; Zubovas, K. & King, A. 2012, ApJ, 745, L34
50-53 (PDF)
Castro, N., Roth, M.M. et al.
Mapping the Youngest and Most Massive Stars in the Tarantula Nebula with MUSE-NFM

DOI:
10.18727/0722-6691/5223
ADS BibCode:
2021Msngr.182...50C
Section:
Astronomical Science
Author(s)/Affiliation(s):
Castro, N.; Roth, M.M.; Weilbacher, P.M.; Micheva, G.; Monreal-Ibero, A.; Kelz, A.; Kamann, S.; Maseda, M.V.; Wendt, M.; The MUSE collaboration
AA(Leibniz-Institut für Astrophysik Potsdam, Germany) AB(Leibniz-Institut für Astrophysik Potsdam, Germany) AC(Leibniz-Institut für Astrophysik Potsdam, Germany) AD(Leibniz-Institut für Astrophysik Potsdam, Germany) AE(Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain) AF(Leibniz-Institut für Astrophysik Potsdam, Germany) AG(Astrophysics Research Institute, Liverpool John Moores University, UK) AH(Leiden Observatory, Leiden University, the Netherlands) AI(Institut für Physik und Astronomie, Universität Potsdam, Germany)
Abstract:
The evolution of the most massive stars is a puzzle with many missing pieces. Statistical analyses are key to providing anchors to calibrate theory, but performing these studies is an arduous job. The state-of-the-art integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) has stirred up stellar astrophysicists, who are excited about its ability to take spectra of up to a thousand stars in a single exposure. The excitement was even greater with the commissioning of the MUSE narrow-field mode (MUSE-NFM) that has demonstrated angular resolution akin to that of the Hubble Space Telescope (HST). We present the first mapping of the dense stellar core R136 in the Tarantula nebula based on a MUSE-NFM mosaic. We aim to deliver the first homogeneous analysis of the most massive stars in the local Universe and to explore the impact of these peculiar objects on the interstellar medium (ISM).
References:
Bacon, R. et al. 2014, The Messenger, 157, 13; Castro, N. et al. 2018a, A&A, 614, A147; Castro, N. et al. 2018b, ApJ, 868, 57; Crowther, P. A. et al. 2010, MNRAS, 408, 731; Crowther, P. A. et al. 2017, The Messenger, 170, 40; Dorigo Jones, J. et al. 2020, 903, 43; Ekström, S. et al. 2012, A&A, 537, A146; Evans, C. J. et al. 2011, A&A, 530, A108 Kamann, S. et al. 2016, The Messenger, 164, 18; Langer, N. 2012, ARA&A, 50, 107; Langer, N. & Kudritzki, R. P. 2014, A&A, 564, A52; Leibundgut, B. et al. 2019, The Messenger, 176, 16; Maeder, A. & Meynet, G. 2000, ARA&A, 38, 143; Richard, J. et al. 2019, arXiv:1906.01657; Roth, M. M. et al. 2018, A&A, 618, A3; Roth, M. M., Weilbacher, P. M. & Castro, N. 2019, AN, 340, 989; Sabbi, E. et al. 2013, AJ, 146, 53; Sana, H. et al. 2012, Science, 337, 444; Schneider, F. R. N. et al. 2018, Science, 361, 7032; Simón-Díaz, S. et al. 2017, A&A, 597, A22; Puls, J. et al. 2005, A&A, 435, 669; Weilbacher, P. M. et al. 2018, A&A, 611, A95 Wang, C. et al. 2020, ApJL, 888, L12

Astronomical News

55-56 (PDF)
Berg, T.A.M., Ribas, Á.
Fellows at ESO

DOI:
10.18727/0722-6691/5224
ADS BibCode:
2021Msngr.182...55E
Section:
Astronomical News
Author(s)/Affiliation(s):
Berg, T.A.M.; Ribas, Á.
AA(ESO) AB(ESO)
57-57 (PDF)
Zerbi, F.M., Fontana, A.
In memoriam Nichi D’Amico

DOI:
10.18727/0722-6691/5225
ADS BibCode:
2021Msngr.182...57Z
Section:
Astronomical News
Author(s)/Affiliation(s):
Zerbi, F.M.; Fontana, A.
AA(INAF, Rome, Italy) AB(INAF – Osservatorio Astronomico di Roma, Italy)
58-59 (PDF)
Lyubenova, M.
Message from the Editor

DOI:
10.18727/0722-6691/5226
ADS BibCode:
2021Msngr.182...58L
Section:
Astronomical News
Author(s)/Affiliation(s):
Lyubenova, M.
AA(ESO)
60-60 (PDF)
ESO
Personnel Movements

ADS BibCode:
2021Msngr.182...60E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO

61-63 (PDF)
ESO
Annual Index 2020 (Nos. 179–181)

ADS BibCode:
2021Msngr.182...61E
Author(s)/Affiliation(s):
ESO