Messenger No. 170 (December 2017)

« Back to The Messenger home

The Organisation

2-8 (PDF)
Watson, F., Couch, W.
Astronomy in Australia

DOI:
10.18727/0722-6691/5047
ADS BibCode:
2017Msngr.170....2W
Section:
The Organisation
Author(s)/Affiliation(s):
Watson, F.; Couch, W.
AA(Australian Astronomical Observatory, Sydney, Australia) AB(Australian Astronomical Observatory, Sydney, Australia)
Abstract:
Australians have watched the sky for tens of thousands of years. The nineteenth century saw the foundation of government observatories in capital cities such as Sydney and Melbourne. While early twentieth-century astronomy focused largely on solar physics, the advent of radio astronomy at the end of the Second World War enabled Australia to take a leading role in the new science, with particular emphasis on low-frequency studies. Today, the radio quietness of its outback interior provides an excellent location for the Australian core of the Square Kilometre Array. Australian optical astronomy has flourished since the 1960s, with the 3.9-metre Anglo-Australian Telescope becoming the principal national facility in 1974. Access to ESO’s facilities at the La Silla Paranal Observatory is warmly welcomed by all Australian astronomers.

Telescopes and Instrumentation

10-15 (PDF)
Gravity Collaboration
First Light for GRAVITY: A New Era for Optical Interferometry

DOI:
10.18727/0722-6691/5048
ADS BibCode:
2017Msngr.170...10E
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Gravity Collaboration

Abstract:
With the arrival of the second generation instrument GRAVITY, the Very Large Telescope Interferometer (VLTI) has entered a new era of optical interferometry. This instrument pushes the limits of accuracy and sensitivity by orders of magnitude. GRAVITY has achieved phase-referenced imaging at approximately milliarcsecond (mas) resolution and down to ~ 100-microarcsecond astrometry on objects that are several hundred times fainter than previously observable. The cutting-edge design presented in Eisenhauer et al. (2011) has become reality. This article sketches out the basic principles of the instrument design and illustrates its performance with key science results obtained during commissioning: phase-tracking on stars with K ~ 10 mag, phase-referenced interferometry of objects fainter than K ≳ 17 mag, minute-long coherent integrations, a visibility accuracy of better than 0.25 %, and spectro-differential phase and closure phase accuracy better than 0.5 degrees, corresponding to a differential astrometric precision of a few microarcseconds (μas).
References:
Eisenhauer, F. et al. 2011, The Messenger, 143, 16; Fabrika, S. 2004, Astrophys. & Space Phys. Rev., 12, 1; Genzel, R., Eisenhauer, F. & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121; GRAVITY collaboration: Abuter, R. et al. 2017a, A&A, 602, A94; GRAVITY collaboration: Garcia Lopez, R. et al. 2017b, A&A, 608, A78; GRAVITY collaboration: Petrucci, P. O. et al. 2017c, A&A, 602, L11; GRAVITY collaboration: Waisberg, I. et al. 2017d, ApJ, 844, 72; Kaper, L., van der Meer, A. & Najarro, F. 2006, A&A, 457, 595; Kervella, P. et al. 2016, A&A, 593, A127; Leahy, D. A. & Kostka, M. 2008, MNRAS, 384, 747; Madura, T. I. et al. 2013, MNRAS, 436, 3820; Margon, B. et al. 1979, ApJ, 233, 63; Paragi, Z. et al. 2001, Ap&SS Suppl., 276, 131; Paumard, T. et al. 2008, The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation, ed. Richichi, A., Delplancke, F., Paresce, F. & Chelli, A., (Berlin ­Heidelberg: Springer-Verlag), 313; Shao, M. & Colavita, M. M. 1992, A&A, 262, 353; Weigelt, G. et al. 2016, A&A, 594, A106
16-19 (PDF)
Mérand, A., Berger, J.-P. et al.
GRAVITY Science Verification

DOI:
10.18727/0722-6691/5049
ADS BibCode:
2017Msngr.170...16M
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Mérand, A.; Berger, J.-P.; de Wit, W.-J.; Eisenhauer, F.; Haubois, X.; Paumard, T.; Schoeller, M.; Wittkowski, M.; Woillez, J.; Wolff, B.
AA(ESO) AB(Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, CNRS, France) AC(ESO) AD(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AE(ESO) AF(LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Université Paris 6, Université Paris Diderot, Sorbonne Paris Cité, France) AG(ESO) AH(ESO) AI(ESO) AJ(ESO)
Abstract:
In the time between successfully commissioning an instrument and before offering it in the Call for Proposals for the first time, ESO gives the community at large an opportunity to apply for short Science Verification (SV) programmes. In 2016, ESO offered SV time for the second-generation Very Large Telescope Interferometer instrument GRAVITY. In this article we describe the selection process, outline the range of science cases covered by the approved SV programmes, and highlight some of the early scientific results.
References:
Absil, O. et al. 2010, A&A, 520, L2; Augereau, J. C. et al. 2001, A&A, 370, 447; Beust, H. et al. 1990, A&A, 236, 202; Bonneau, D. et al. 2011, A&A, 532, A148; Chapillon, E. et al. 2008, A&A, 488, 565; Davies, C. L. et al. 2017, arxiv.org:1711.10244; Defrère, D. et al. 2012, A&A, 546, L9; Dent, W. R. F. et al. 2014, Science, 343, 1490; Eisner, J. A. et al. 2004, ApJ, 613, 1049; Freytag, B. & Höfner, S. 2008, A&A, 483, 571; Freytag, B. et al. 2017, A&A, 600, A137; GRAVITY Collaboration 2017a, A&A, 602, A94; Ireland, M. J. et al. 2008, MNRAS, 391, 1994; Ireland, M. J. et al. 2011, MNRAS, 418, 114; Kishimoto, M. 2016, A&A, 590, A96; Koubsky, P. et al. 2006, A&A, 459, 849; Kreplin, A. et al. 2013, A&A, 551, A21; Kreplin, A. et al. 1997, ApJ, 491, 885; Netolický, M. et al. 2009, A&A, 499, 827; Pinte, C. et al. 2008, ApJ, 673, L63; Pontoppidan, K. M. et al. 2007, ApJ, 656, 980; Rodgers, B. M., Pierpoint, L. M. & van der Bliek, N. S. 2003, AAS Abstracts, 35, 1257; Sana, H. et al. 2014, ApJS, 215, 15; Sanchez-Bermudez, J. et al. 2017, ApJ, 845, 57; Tambovtseva, L. V. & Grinin, V. P. 2008, Astronomy Letters, 34, 231; Vural, J. et al. 2014, A&A, 564, A118; Thompson, R. R. et al. 2002, ApJ, 577, 447; Wittkowski, M. et al. 2016, A&A, 587, A12; Wittkowski, M. et al. 2017, A&A, 601, A3
20-25 (PDF)
Leibundgut, B., Bacon, R. et al.
MUSE WFM AO Science Verification

DOI:
10.18727/0722-6691/5050
ADS BibCode:
2017Msngr.170...20L
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Leibundgut, B.; Bacon, R.; Jaffé, Y.L.; Johnston, E.; Kuntschner, H.; Selman, F.; Valenti, E.; Vernet, J.; Vogt, F.
AA(ESO) AB(CRAL, Observatoire de Lyon, Saint Genis Laval, France) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO)
Abstract:
The goal of Science Verification (SV) as part of the transition into operations is to carry out scientific observations to test the end-to-end operations of a new instrument or new instrument modes. The Multi Unit Spectroscopic Explorer, (MUSE; Bacon et al., 2010), at the Very Large Telescope (VLT) can be operated in several modes. The wide-field mode has been offered since Period 94 (October 2014) for natural-seeing observations. With the commissioning of the Adaptive Optics Facility (AOF; Arsenault et al., 2017) the wide-field mode can be supported by ground-layer adaptive optics through four artificial laser guide stars and the adaptive optics module, Ground Atmospheric Layer Adaptive OptiCs for Spectroscopic Imaging (GALACSI). The MUSE wide-field mode adaptive optics Science Verification (hereafter referred to MUSE WFM AO SV) was scheduled from 12–14 August 2017. Out of 41 submitted proposals, 19 observing programmes were scheduled, covering a wide range of science topics and amounting to an allocation of 42 hours. This included sufficient oversubscription to cover all expected observing conditions. Due to inclement weather during the original SV nights, two more nights were allocated on 16 and 17 September 2017 to observe more programmes. In total, seven programmes were completed, six programmes received partial data, and the remaining six projects could not be started. We summarise here the planning, execution and first results from the Science Verification.
References:
Adamo, A. et al. 2017, ApJ, 841, 131; Arsenault, R. et al. 2017, Messenger, 164, 2; Bacon, R. et al. 2010, SPIE, 7735, 7; Calzetti, D. et al. 2015, AJ, 149, 51; Evans, C. J. et al. 2006, A&A, 456, 623; Martayan, C. et al. 2007a, A&A, 462, 683; Martayan, C. et al. 2007b, A&A, 472, 577; Sirianni, M. et al. 2002, ApJ, 579, 275; Stach, S. M. et al. 2017, ApJ, 849, 154

Astronomical Science

29-33 (PDF)
Poggianti, B.M., Gullieuszik, M. et al.
Tales of Tails: Gas Stripping Phenomena in Galaxies with MUSE

DOI:
10.18727/0722-6691/5051
ADS BibCode:
2017Msngr.170...29P
Section:
Astronomical Science
Author(s)/Affiliation(s):
Poggianti, B.M.; Gullieuszik, M.; Moretti, A.; Jaffé, Y.L.; Fritz, J.; Vulcani, B.; Bettoni, D.; Bellhouse, C.; Fasano, G.; Radovich, M.; the GASP collaboration
AA(INAF–Astronomical Observatory of Padova, Italy) AB(INAF–Astronomical Observatory of Padova, Italy) AC(INAF–Astronomical Observatory of Padova, Italy) AD(ESO) AE(Instituto de Radioastronomía y Astrofísica, UNAM, Morelia, Mexico) AF(INAF–Astronomical Observatory of Padova, Italy; University of Melbourne, Australia) AG(INAF–Astronomical Observatory of Padova, Italy) AH(ESO; University of Birmingham, United Kingdom) AI(INAF–Astronomical Observatory of Padova, Italy) AJ(INAF–Astronomical Observatory of Padova, Italy)
Abstract:
The MUSE spectrograph is observing a sample of over 100 galaxies at z = 0.04–0.07 in order to investigate how environmental effects can cause galaxies to lose their gas. These galaxies have a wide range of galaxy stellar masses and environments, from clusters and groups to isolated galaxies, and have been selected because they show unilateral debris or tails suggestive of gas stripping. MUSE’s large field of view, sensitivity, and spatial and spectral resolution allow us to study the physics of the stars and ionised gas in each galaxy in great detail, including the outskirts and extraplanar tails or debris out to 50–100 kpc away from each galaxy: a distance of more than ten times the galaxy’s effective radius. We present the ongoing programme, GAs Stripping Phenomena in galaxies (GASP), and report on the first set of results.
References:
Bellhouse, C. et al. 2017, ApJ, 844, 49; Fritz, J. et al. 2017, ApJ, 848, 132; Gunn, J. E. & Gott, J. R. 1972, ApJ, 176, 1; Gullieuszik, M. et al. 2017, ApJ, 846, 27; Jaffé, Y. L. et al. 2017, submitted to MNRAS Moretti, A. et al. 2017, submitted to MNRAS Poggianti, B. et al. 2016, AJ, 151, 78; Poggianti, B. et al. 2017a, ApJ, 844, 48; Poggianti, B. et al. 2017b, Nature, 548, 304; Tonnesen, S. & Bryan, G. L. 2012, MNRAS, 422, 1609; Vulcani, B. et al. 2017a, ApJ, in press Vulcani, B. et al. 2017b, ApJ, 850, 163
34-39 (PDF)
Spavone, M., Capaccioli, M. et al.
Unveiling the Nature of Giant Ellipticals and their Stellar Halos with the VST

DOI:
10.18727/0722-6691/5052
ADS BibCode:
2017Msngr.170...34S
Section:
Astronomical Science
Author(s)/Affiliation(s):
Spavone, M.; Capaccioli, M.; Napolitano, N.R.; Iodice, E.; Grado, A.; Limatola, L.; Cooper, A.P.; Cantiello, M.; Forbes, D.A.; Paolillo, M.; Schipani, P.
AA(INAF–Astronomical Observatory of Capodimonte, Italy) AB(INAF–Astronomical Observatory of Capodimonte, Italy; University of Naples Federico II, Italy) AC(INAF–Astronomical Observatory of Capodimonte, Italy) AD(INAF–Astronomical Observatory of Capodimonte, Italy) AE(INAF–Astronomical Observatory of Capodimonte, Italy) AF(INAF–Astronomical Observatory of Capodimonte, Italy) AG(Institute for Computational Cosmology, Durham, UK) AH(INAF–Astronomical Observatory of Teramo, Italy) AI(Centre for Astrophysics & Supercomputing, Swinburne University, Australia) AJ(University of Naples Federico II, Italy) AK(INAF–Astronomical Observatory of Capodimonte, Italy)
Abstract:
Observations of diffuse starlight in the outskirts of galaxies provide fundamental constraints on the cosmological context of galaxy assembly in the Lambda Cold Dark Matter model, which predicts that galaxies grow through a combination of in-situ star formation and accretion of stars from other galaxies. Accreted stars are expected to dominate in the outer parts of galaxies. Since dynamical timescales are longer in these regions, substructures related to accretion, such as streams and shells, can persist over many Gyr. In this work we use extremely deep g- and i-band images of six massive early- type galaxies (ETGs) from the VEGAS survey to constrain the properties of their accreted stellar components. The wide field of view of OmegaCAM on the VLT Survey Telescope (VST) also allows us to investigate the properties of small stellar systems (such as globular clusters, ultra-compact dwarfs and satellite galaxies) in the halos of our galaxies. By fitting light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in-situ and accreted stars.
References:
Bender, R. et al. 2015, ApJ, 807, 56; Capaccioli, M. et al. 2015, A&A, 581, A10; Cooper, A. P. et al. 2013, MNRAS, 434, 3348; Cooper, A. P. et al. 2015, MNRAS, 451, 2703; Deason, A. J. et al. 2013, ApJ, 763, 113; Donzelli, C. J. et al. 2011, ApJ, 195, 15; Font, A. S. et al. 2011, MNRAS, 416, 2802; Iodice, E. et al. 2016, ApJ, 820, 42; Rodriguez-Gomez, V. et al. 2016, MNRAS, 458, 2371; Seigar, M. S. et al. 2007, MNRAS, 378, 1575; Spavone, M. et al. 2017, A&A, 603A, 38S
40-44 (PDF)
Crowther, P.A., Castro, N. et al.
Dissecting the Core of the Tarantula Nebula with MUSE

DOI:
10.18727/0722-6691/5053
ADS BibCode:
2017Msngr.170...40C
Section:
Astronomical Science
Author(s)/Affiliation(s):
Crowther, P.A.; Castro, N.; Evans, C.J.; Vink, J.S.; Melnick, J.; Selman, F.
AA(Department of Physics & Astronomy, University of Sheffield, United Kingdom) AB(Department of Astronomy, University of Michigan, Ann Arbor, USA) AC(UK Astronomy Technology Centre, Royal Observatory, Edinburgh, United Kingdom) AD(Armagh Observatory, United Kingdom) AE(ESO) AF(ESO)
Abstract:
We provide an overview of Science Verification MUSE observations of NGC 2070, the central region of the Tarantula Nebula in the Large Magellanic Cloud. Integral-field spectroscopy of the central 2 × 2 arcminute region provides the first complete spectroscopic census of its massive star content, nebular conditions and kinematics. The star formation surface density of NGC 2070 is reminiscent of the intense star-forming knots of high-redshift galaxies, with nebular conditions similar to low-redshift Green Pea galaxies, some of which are Lyman continuum leakers. Uniquely, MUSE permits the star formation history of NGC 2070 to be studied with both spatially resolved and integrated- light spectroscopy.
References:
Baldwin, J. A., Phillips, M. M. & Terlevich, R. 1981, PASP, 93, 5; Bosch, G. et al. 1999, A&AS, 137, 21; Castro, N. et al. 2014, A&A, 570, 13; Crowther, P. A. et al. 2016, MNRAS, 458, 624; Doran, E. et al. 2013, A&A, 558, A134; Evans, C. J. et al. 2011, A&A, 530, A108; Kennicutt, R. C. 1998, ARA&A, 36, 189; Khorrami, Z. et al. 2017, A&A, 602, A56; Kroupa, P. 2002, Science, 295, 82; Indebetouw, R. et al. 2013, ApJ, 774, 73; Johnson, T. L. et al. 2017, ApJ, 843, L21; Maíz-Apellániz, J. et al. 2014, A&A, 564, A63; Micheva, G. et al. 2017, ApJ, 845, 165; Pellegrini, E. W., Baldwin, J. A. & Ferland, G. J. 2011, ApJ, 738, 34; Pettini, M. & Pagel, B. E. J. 2004, MNRAS, 348, L59; Puls, J. et al. 2005, A&A, 435, 669; Pollock, A. M. T. et al. 2017, MNRAS, in press Schaerer, D. & Vacca, W. D. 1998, ApJ, 497, 618; Selman, F. et al. 1999, A&A, 341, 98; Schneider, F. et al. 2017, Science, in press Tsamis, Y. et al. 2003, MNRAS, 338, 687; Walborn, N. et al. 2014, A&A, 564, A40
45-49 (PDF)
Kraus, S., Kluska, J. et al.
VLTI Imaging of a High-Mass Protobinary System: Unveiling the Dynamical Processes in High-Mass Star Formation

DOI:
10.18727/0722-6691/5054
ADS BibCode:
2017Msngr.170...45K
Section:
Astronomical Science
Author(s)/Affiliation(s):
Kraus, S.; Kluska, J.; Kreplin, A.; Bate, M.; Harries, T.; Hofmann, K.-H.; Hone, E.; Monnier, J.; Weigelt, G.; Anugu, N.; de Wit, W.-J.; Wittkowski, M.
AA(University of Exeter, UK) AB(University of Exeter, UK) AC(University of Exeter, UK) AD(University of Exeter, UK) AE(University of Exeter, UK) AF(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AG(University of Exeter, UK) AH(University of Michigan, Ann Arbor, USA) AI(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AJ(University of Exeter, UK) AK(ESO) AL(ESO)
Abstract:
High-mass stars exhibit a significantly higher multiplicity frequency than low-mass stars, likely reflecting differences in how they formed. Theory suggests that high-mass binaries may form by the fragmentation of self-gravitational discs or by alternative scenarios such as disc-assisted capture. Near-infrared interferometric observations reveal the high-mass young stellar object IRAS 17216-3801 to be a close high-mass protobinary with a separation of 0.058 arcseconds (~ 170 au). This is the closest high-mass protobinary system imaged to date. We also resolve near- infrared excess emission around the individual stars, which is associated with hot dust in circumstellar discs. These discs are strongly misaligned with respect to the binary separation vector, indicating that tidal forces have not yet had time to realign. We measure a higher accretion rate towards the circumsecondary disc, confirming a hydrodynamic effect where the secondary star disrupts the primary star’s accretion stream and effectively limits the mass that the primary star can accrete. NACO L′-band imaging may also have resolved the circumbinary disc that feeds the accretion onto the circumstellar discs. This discovery demonstrates the unique capabilities of the VLTI, creating exciting new opportunities to study the dynamical processes that govern the architecture of close multiple systems.
References:
Bate, M. R. & Bonnell, I. 1997, MNRAS, 285, 33; Bate, M. R. et al. 2000, MNRAS, 317, 773; Bate, M. R. et al. 2010, MNRAS, 401, 1505; Boley, P. et al. 2013, A&A, 558, 24; Caratti o Garatti, A. et al. 2016, A&A, 589, L4; Caratti o Garatti, A. et al. 2017, Nature Physics, 13, 276; Chini, R. et al. 2012, MNRAS, 424, 1925; Dale, J. E. & Davies, M. B. 2006, MNRAS, 366, 1424; GRAVITY Collaboration 2017, A&A, 602, A94; Johnston, K. et al. 2015, ApJ, 813, 19; Kratter, K. M. & Matzner, C. D. 2006, MNRAS, 373, 1563; Kraus, S. et al. 2008, A&A, 489, 1157; Kraus, S. et al. 2010, Nature, 466, 339; Kraus, S. et al. 2017, ApJL, 835, L5; Kuiper, R. et al. 2010, ApJ, 722, 1556; Kurosawa, R. et al. 2016, MNRAS, 457, 2236; Lazareff, B. et al. 2017, A&A, 599, L85; Papaloizou, J. C. B. & Terquem, C. 1995, MNRAS, 274, 987; Sridharan, T. K., Williams, S. J. & Fuller, G. A. 2005, ApJL, 631, L73

Astronomical News

51-57 (PDF)
Patat, F., Boffin, H.M.J. et al.
The ESO Survey of Non-Publishing Programmes

DOI:
10.18727/0722-6691/5055
ADS BibCode:
2017Msngr.170...51P
Section:
Astronomical News
Author(s)/Affiliation(s):
Patat, F.; Boffin, H.M.J.; Bordelon, D.; Grothkopf, U.; Meakins, S.; Mieske, S.; Rejkuba, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO)
Abstract:
One of the classic ways to measure the success of a scientific facility is the publication return, which is defined as the refereed papers produced per unit of allocated resources (for example, telescope time or proposals). The recent studies by Sterzik et al. (2015, 2016) have shown that 30–50 % of the programmes allocated time at ESO do not produce a refereed publication. While this may be inherent to the scientific process, this finding prompted further investigation. For this purpose, ESO conducted a Survey of Non-Publishing Programmes (SNPP) within the activities of the Time Allocation Working Group, similar to the monitoring campaign that was recently implemented at ALMA (Stoehr et al., 2016). The SNPP targeted 1278 programmes scheduled between ESO Periods 78 and 90 (October 2006 to March 2013) that had not published a refereed paper as of April 2016. The poll was launched on 6 May 2016, remained open for four weeks, and returned 965 valid responses. This article summarises and discusses the results of this survey, the first of its kind at ESO.
References:
Boffin, H. M. J. et al. 2015, The Messenger, 159, 6; Fan, W. & Yan, Z. 2010, Computers in Human Behavior, 26(2), 132; Franco, A., Malhotra, N. & Simonovits, G. 2014, Science, 345, 1502; Grothkopf, U. & Meakins, S. 2015, ASP conference series, 492, 63; Matosin, N. et al. 2014, Disease Models and Mechanisms, 7(2), 171; Sterzik, M. et al. 2015, The Messenger, 162, 2; Sterzik, M. et al. 2016, SPIE, 9910E..03S Stoehr, F. et al. 2016, arxiv:1611.09625
58-61 (PDF)
Grothkopf, U., Bordelon, D. et al.
On the Availability of ESO Data Papers on arXiv/astro-ph

DOI:
10.18727/0722-6691/5056
ADS BibCode:
2017Msngr.170...58G
Section:
Astronomical News
Author(s)/Affiliation(s):
Grothkopf, U.; Bordelon, D.; Meakins, S.; Emsellem, E.
AA(ESO) AB(ESO) AC(ESO) AD(ESO)
Abstract:
Using the ESO Telescope Bibliography database telbib, we have investigated the percentage of ESO data papers that were submitted to the arXiv/astro-ph e-print server and that are therefore free to read. Our study revealed an availability of up to 96 % of telbib papers on arXiv over the years 2010 to 2017. We also compared the citation counts of arXiv vs. non-arXiv papers and found that on average, papers submitted to arXiv are cited 2.8 times more often than those not on arXiv. While simulations suggest that these findings are statistically significant, we cannot yet draw firm conclusions as to the main cause of these differences.
References:
Bordelon, D. et al. 2016, Proc. SPIE., 9910, 99102B Eichhorn, G. et al. 2003, LISA IV, ed. Corbin, B. G., Bryson, E. P. & Wolf, M., (Washington, DC: U. S. Naval Observatory), 145; Piwowar, H. et al. 2017, PeerJ Preprints, 5, e3119v1
61-63 (PDF)
Mainieri, V., Popesso, P.
Report on the ESO and Excellence Cluster Universe Workshop "Galaxy Ecosystem: Flow of Baryons through Galaxies"

DOI:
10.18727/0722-6691/5057
ADS BibCode:
2017Msngr.170...61M
Section:
Astronomical News
Author(s)/Affiliation(s):
Mainieri, V.; Popesso, P.
AA(ESO) AB(Technical University of Munich, Germany)
Abstract:
This conference focussed on the "baryon cycle", namely the flow of baryons through galaxies. The following aspects were discussed: a) the gas inflow into systems through streams of pristine gas or as drizzles of recycled material; b) the conversion of this gas into stars; and c) the ejection of gas enriched with heavy elements through powerful outflows. Understanding these different but mutually connected phases is of fundamental importance when studying the details of galaxy formation and evolution through cosmic time. This conference was held following the month-long workshop of the Munich Institute for Astro- and Particle Physics (MIAPP) entitled: "In & out: What rules the galaxy baryon cycle?" It therefore provided an opportunity to share the main outcomes of the MIAPP workshop with a larger audience, including many young outstanding scientists who could not attend the MIAPP workshop.
63-65 (PDF)
Mroczkowski, T., Stroe, A. et al.
Report on the ESO Workshop "Early Stages of Galaxy Cluster Formation 2017 (GCF2017)"

DOI:
10.18727/0722-6691/5058
ADS BibCode:
2017Msngr.170...63M
Section:
Astronomical News
Author(s)/Affiliation(s):
Mroczkowski, T.; Stroe, A.; Andreani, P.; Arnaud, M.; Arrigoni Battaia, F.; De Breuck, C.; Sobral, D.
AA(ESO) AB(ESO) AC(ESO) AD(Service d’Astrophysique/DAPNIA/DSM, CEA Saclay, Gif-sur-Yvette, France) AE(ESO) AF(ESO) AG(Lancaster University, UK)
Abstract:
The formation of the largest gravitationally bound structures in the Universe, clusters of galaxies, and how these environments affect the galaxies within them are major themes in cosmology and galaxy evolution. The high-redshift progenitors of clusters, called "protoclusters", are still in the process of hierarchical assembly. The transition from protocluster to cluster is gradual, driven by accretion and spectacular mergers that are expected to last roughly one billion years. This workshop aimed to address open questions in protocluster and cluster formation, to define the similarities and distinctions between the two, and to evaluate the best tools and methods for their detection and study.
References:
Tamura, Y. et al. 2009, Nature, 459, 61
66-68 (PDF)
Messias, H., Man, A.
Fellows at ESO

DOI:
10.18727/0722-6691/5059
ADS BibCode:
2017Msngr.170...66E
Section:
Astronomical News
Author(s)/Affiliation(s):
Messias, H.; Man, A.
AA(ESO) AB(ESO)
68-69 (PDF)
Oteo, I.
External Fellows at ESO

DOI:
10.18727/0722-6691/5060
ADS BibCode:
2017Msngr.170...68E
Section:
Astronomical News
Author(s)/Affiliation(s):
Oteo, I.
AA(ESO)
70-70 (PDF)
ESO
Personnel Movements

ADS BibCode:
2017Msngr.170...70E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO

70-71 (PDF)
Hussain, G.A.J.
Message from the Editor

ADS BibCode:
2017Msngr.170...70H
Section:
Astronomical News
Author(s)/Affiliation(s):
Hussain, G.A.J.
AA(ESO)