Proposal Submission Tools

held at ESO Headquarters, Garching, Germany, 4–6 June 2018

Andy Biggs¹ Alan Bridger² John Carpenter³ Carlos De Breuck¹ Brian Glendenning⁴ Daisuke Iono⁵ Erich Schmid¹ Leonardo Testi¹

¹ ESO

- ² UK Astronomy Technology Centre, Royal Observatory, Edinburgh, UK
- ³ Joint ALMA Observatory, Santiago, Chile
 ⁴ National Radio Astronomy Observatory, Socorro, New Mexico, USA
- ⁵ National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan

The Atacama Large Millimeter/ submillimeter Array (ALMA) Observing Tool is a desktop Java application which has been used very successfully since the beginning of science operations to submit requests for time during the annual Call for Proposals, as well as to prepare observing materials such as Scheduling Blocks. An ALMA upgrade study is currently looking at ways in which the OT might be modernised. As part of this study, a workshop was held at ESO Garching in order to bring together groups working on similar systems at observatories around the world.

As is the case for most astronomical observatories, it is necessary for ALMA to provide a way for astronomers to submit their observing proposals. As mundane and obvious as this may sound, proposal submission tools have evolved into complex systems which can carry out a number of tasks. As well as collecting the essential scientific parameters (pointing position, frequency or wavelength coverage, desired sensitivity, etc.), modern submission systems should be easily operable by astronomers working in any band of the electromagnetic spectrum, and incorporate tools and visualisation capabilities, enabling the performance of technical feasibility checks. They must also be capable of dealing with a large volume of traffic due to increased rates of submission close to the deadline. In addition, the software should interface with other software systems in operation

at the observatory. Software developers, on the other hand, require code that is easily maintainable and which is not in danger of becoming deprecated or obsolete.

The solution adopted by ALMA is the Observing Tool (OT), a Java desktop application which was released to the ALMA community in time for Cycle 0 of ALMA operations in 2011 (Bridger et al., 2008). The OT has been a great success and was used to submit over 1800 proposals in the most recent deadline in April 2018 (Cycle 6). However, the OT is beginning to show its age. Its development was begun in 2002, and the original technologies have been overtaken by increasingly rapid developments in the available software. In addition, certain toolsets used by the OT have become deprecated, for example, the toolset used to display the OT's main GUI and Java Web Start; the latter will be removed from Java 11 (due to be released later this year). At the same time, desktop installations such as those used by the OT have generally given way to web-based solutions.

With this in mind, an ALMA upgrade study was launched in September 2017, with the goal of investigating alternatives to the current implementation, which could subsequently form the basis of an upgraded OT. It was quickly realised that a huge amount of expertise is in place across various observatories around the world, each of which tends to develop its own proposal submission system independently. In order to allow the ALMA OT team to benefit from the knowledge and experience embedded at each observatory and, perhaps more importantly, to allow all observatories to benefit, a short workshop was organised at ESO with the aim of bringing together staff working on these systems all over the world.

The workshop brought together representatives from 11 observatories. In alphabetical order, these were ALMA, the Netherlands institute for Radio Astronomy (ASTRON), the Cherenkov Telescope Array (CTA), ESO, Gemini, the Giant Metrewave Radio Telescope (GMRT), Institut de Radioastronomie Millimétrique (IRAM, France), the National Astronomical Observatory Japan (NAOJ), the National Optical Astronomical Observatories (NOAO, USA), National Radio Astronomy Observatory (NRAO, USA), and the Square Kilometre Array (SKA). As well as covering the entire electromagnetic spectrum (radio, millimetre, infrared, optical and high energy), these observatories represent different levels of sophistication in how proposals are collected from their community. Two of them, SKA and CTA, are still deciding what their proposal submission systems will look like when they issue their first Call for Proposals. ASTRON is notable as

Figure 1. A screenshot from a prototype of the ALMA Observing Tool showing the spatial visual editor.

and the second	Constant Income										C
rin CO 🤟 🤄	apatianinage	_	source								Ŀ
0	102912.696 4071342.00	p	Source Name								
up Al		P.	M51								
Pillar 6)			Choose a Solar Syst	tem Object?				Name of Object			
d 📱 Delete								Select one			
tup 🗠		and so the second s	System		Sexagesi	mal Units	RA		0	Dec	
Setup Ø		10 A A A A A A A A A A A A A A A A A A A	ICRS				13:2	19:52.698000		47:11:42.930000	
Performance Ó			Parallax			PMR	A		PMI	DEC	
ustification		The second second	7.8	m	as -	0		mas/yr	- 0	(mas/yr •
	5		Radial Velocity		Reference	e System		z		Doppler Type	
			-19	km/s •	lsrk			0		RADIO	-
	Feet 18.6	COP 1									_
			Expected Source	Properties							
			Expected Source	Properties							L
		a 2' o a 11 x	Expected Source Peak Continuum FI	e Properties	r Synthesized	Beam		Peak Line Flux Der	nsity per Sy	ynthesized Beam	-
	Q Q 🖬 🖉 🖿 318,210	0 27 0 0 11 X 2024696, 47,1953	Peak Continuum Fi	e Properties	r Synthesized	l Beam ly	•	Peak Line Flux Der	nsity per Sy	ynthesized Beam	
	Q Q 🖬 🖉 📼 318,210 Image Filoname	0 C 0 1 11 X 2024696,47.1953	Expected Source Peak Continuum Fil 0.13 Continuum Polariz	a Properties	r Synthesized	l Beam	• Line Polarization	Peak Line Flux Der 1.4 n Percentage	usity per Sy U	ynthesized Beam Jy Jne Width	
	Q Q 🖬 🖉 🖿	2024696,47.1953	Expected Source Peak Continuum Fil 0.13 Continuum Polariz 0	e Properties lux Density pr ation Percent	r Synthesized	Beam by %	• Line Polarization 0	Peak Line Flux Der 1.4 n Percentage	usity per Sy U	ine Width	- km/s •
	Q Q E D SOLO	2024696,47.1953	Expected Source Peak Continuum Fil 0.13 Continuum Polariz 0	e Properties	r Synthesized	i Beam by %	• Line Polarization 0	Peak Line Flux Der 1.4 n Percentage	usity per Sy U	ynthesized Beam Jy Ine Width 0.00307616292131	• km/s •
	Q Q D D Lange Filesame	B 2 0 0 0 11 11 K 2024496,47,1953	Expected Source Peak Continuum Fil 0.13 Continuum Polariz 0 Field Centre Coc	e Properties hux Density pr ation Percent ordinates	r Synthesized	1 Beam by %	• Line Polarization 0	Peak Line Flux Der 1.4 n Percentage	usity per Sy U	ynthesized Beam Jy ine Width 0.000307616292135	- km/s •
	Q Q Image Transme 15/2 Parameters Representation Frequency (Star)	0 07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Expected Source Peak Continuum Fil 0.13 Continuum Polariz 0 Field Centre Coc	Properties wx Density pr ation Percent ordinates	r Synthesizeo	f Beam by %	• Line Polarization 0	Peak Line Flux Der 14 n Percentage	U %	ynthesized Beam Jy line Width 0.000307616292135	- km/s •
	Q Q ID In 318.210 Inage Fierance TOV Parameters Representation Property Big) 0000 Gatz	0 0 0 1 1 K 202466.03193	Expected Source Peak Continuum Fil 0.13 Continuum Polariz 0 Field Centre Coc Coord Type Relative # /	Properties hux Density pr ation Percent ordinates	r Synthesizee age Target Ty Indi	I Beam by % %	Une Polarization O Inting(t) Field	Peak Line Flux Der 14 n Percentage	U %	ynthesized Beam 2y ine Width 0.000307616292135	- km/s •
	CV Proceeders TCV Proceeders Representative Frequency (Stry) Constraints Actional Beaming & PPD(9) Constraints Const	Gr 0	Expected Source Peak Continuum FI 0.13 Continuum Polariz. 0 Field Centre Coc Coord Type Relative I / Offset Unit	Properties hux Density pr ation Percent ordinates	r Synthesizer age Target Ty Rect	1 Beam by % % pe vidual Po tangular	0 inting(s)	Peak Line Flux Der 14 n Percentage	U S POINTIP	ynthesized Beam	- km/s -
	Q Q Image of the second secon	D O D E K 2024/96.471953	Expected Source Peak Continuum Fil	Properties hux Density pr ation Percent ordinates	r Synthesized age Target Ty Indi Rect	1 Beam by % %	Line Polarization O Inting(s) Field	Peak Line Flux Der 14 n Percentage	U S POINTIN	ynthesized Beam	 km/s -
	Q Q Q Q 318.220 Itage Flexane FOY Parameters Representation Frequency (Stay) Boox Content Antenna Barmice BP(N) Boox Proces Antenna Dimeters Boox Proces	C C C R R K 202464-67.1953	Expected Source Peak Continuum F1 0.13 Continuum F1 0 Field Centre Coo Coord Type Relative / Offset Unit deg Lon	e Properties lux Density pr ation Percent ordinates	r Synthesized	f Beam by % % pe vidual Po tangular	Line Polarization O Inting(s) Field	Peak Line Flux Der 1.4 n Percentage 57	U %	ynthesized Beam 3y 0.00307616292135	km/s •
	CV Parameters TCV Parameters TCV Parameters TCV Parameters TCV Parameters TCV Parameters COV Parameters	G G G G G G G G G G G G G G G G G G G	Expected Source Pask Continuum Fil 0.13 Continuum Polariz; 0 Field Centre Coc Coord Type Retable # / Offset Usit des Lon 1 161.224933	Properties lux Density pr ation Percent ordinates	r Synthesizee Age Target Ty Indi Rect	9 Beam Pr % %	0 Inting(s) Field	Peak Line Flax Der 14 nPercentage 57	POINTIN 5555	ynthesized Beam 3y iae Width 0.000307616292135 NGS	
	Q Q Q Q 318, 220 Image Filename Image Filename <td>ii) (if 0 0 1 K 2024/49,471553</td> <td>Expected Source Pask Continuum File 0.3 Continuum Foliar(a, 0 Field Centre Coc Coord Type Restable® / Offset Unit deg 1 56122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 1651224 2 16512 165 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>e Properties ux Density pr ation Percent ordinates Absolute 75 791666668</td> <td>r Synthesizee age Target Ty Rect</td> <td>1 Beam by %</td> <td>Line Polarization O inting(s) Field</td> <td>Peak Line Flux Der 1.4 Percentage 57 Let -60.0530205555 -60.605672222</td> <td>POINTIP</td> <td>vothesized Beem <i>Jy</i> like Width 0.00307616292135 NGS</td> <td></td>	ii) (if 0 0 1 K 2024/49,471553	Expected Source Pask Continuum File 0.3 Continuum Foliar(a, 0 Field Centre Coc Coord Type Restable® / Offset Unit deg 1 56122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 165122493 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 16512249 2 1651224 2 16512 165 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e Properties ux Density pr ation Percent ordinates Absolute 75 791666668	r Synthesizee age Target Ty Rect	1 Beam by %	Line Polarization O inting(s) Field	Peak Line Flux Der 1.4 Percentage 57 Let -60.0530205555 -60.605672222	POINTIP	vothesized Beem <i>Jy</i> like Width 0.00307616292135 NGS	

Figure 2. Workshop photo.

their Northstar system has been used by multiple observatories, both radio and optical, and they are experts in building common-user software.

The first part of the meeting was devoted to short presentations from each observatory giving an overview of their current proposal submission system, including their specific challenges and plans for the future. All talks given at the workshop have been published on Zenodo and are accessible from the workshop web pages¹. The talks were followed by a demonstration of new tools and functionality by four of the observatories, ALMA (see Figure 1), ESO, Gemini and GMRT. The ESO proposal submission system is currently undergoing a major overhaul, and it was very interesting to see the new system in action. The discussions then began in earnest, covering a large array of topics and including two parallel sessions devoted to technical and policy issues, respectively.

One area that was given special attention during the workshop was that of Authentication, Authorisation and Accounting (AAA). All observatories currently maintain their own user databases and thus each astronomer must create a separate account with their own username and password. Federated Identities, whereby users can log onto multiple internet sites using their user credentials for another, have become familiar to us all through, for example, Facebook and Google, and the question now arises as to whether such an approach could also be used within astronomy. To familiarise the workshop participants with what is a relatively new field, we invited Davide Vaghetti, an expert from Consortium GARR² — the Italian national network for universities and research — to give a general talk introducing this area. ESO's Maurizio Chavan gave an introduction from a purely astronomical perspective.

At the conclusion of the meeting, it became clear that all participants were very interested in staying in touch and building on the discussions and the contacts that had been made during these three days. In order to facilitate this, a Slack workspace called "Astro Observatories Collaboration" has been set up to allow observatories to easily communicate with each other. Another decision was made to set up a working group to investigate what progress can be made in the area of AAA/Federated Identities. Given the success of the meeting, there was also agreement that having a similar meeting in a few years would be beneficial.

Demographics

The workshop was relatively small — with too many participants it would have been difficult to efficiently manage the discussion sessions that formed the bulk of the proceedings. Attendance was by invitation only and individual observatories were contacted by the Scientific Organising Committee and asked to nominate the members of staff that they would like to attend.

In total, we had 34 participants from observatories in Australia, Chile, Europe, India, Japan, South Africa and the US (Figure 2). The gender balance was unfortunately poor, with only four female attendees. With hindsight, the SOC should have encouraged observatories to think about gender balance in their invitations to participate. However, given the small numbers of people working on these systems, it is unclear if this would have brought about a more positive gender balance.

Acknowledgements

We are very grateful to Elena Zuffanelli for her help in organising and running this workshop, as well as to Rein Warmels for his sterling work in putting together and updating the workshop web pages.

References

Bridger, A. et al. 2008, Proc. SPIE, 7019, 0R

Links

- ¹ Workshop programme: https://www.eso.org/ sci/meetings/2018/proposal-tools-workshop/ program.html
- ² Consortium GARR: https://www.garr.it/en