

Detector Controllers

Javier Valenzuela

Instrumentation Engineer

Paranal Instrumentation Group

Instruments of the ESO VLT / VLTI need detectors

Astronomical Instruments of the ESO VLT / VLTI need detectors

UVES

GRAVITY

Principle of Operation CCD, CMOS & IR Detectors

CCD Operating Principle

CCD = Photon-to-electron conversion (analog)

CCD (Charge-Coupled Device)

- Silicon-based
- Light generates charge in each pixel (photoelectric effect).
- Charges are transferred pixel-to-pixel to a readout amplifier.
- Spectral range: \sim 350 nm to \sim 1050 nm
- Peak QE: Often 80–95% in the 500–700 nm range for back-illuminated devices.
- Pros: Low noise, high image quality
 - Use: Astronomy, scientific imaging

OmegaCAM detector mosaic – VST Telescope

32 CCDs - 16 x 16 k - 1x1° FOV + 4 tracker - 288 million pixels!

IR Detector – Operating Principle

IR Detectors (e.g., HgCdTe, InSb)

- Absorb IR photons \rightarrow generate electron-hole pairs.
- HgCdTe (Mercury-Cadmium-Telluride)
- Common astronomy formats:
 - Short-Wave IR (SWIR): 0.8–2.5 µm
 - Mid-Wave IR (MWIR): 2.0-5.3 μm
 - Long-Wave IR (LWIR): 8–14 μm (less common in astronomy).
 - HAWAII-2RG or H4RG arrays typically used in 0.8–2.5 μm.
- Often hybridized with a Readout Integrated Circuit (ROIC).
- Require cooling to reduce thermal noise. (~75 K Cold head)
- Use: Infrared astronomy, thermal imaging

Hawk-I Instrument Mosaic Package

2x2 Detectors - 2Kx2K Hawaii-2RG mosaic for Hawk-I

CMOS Operating Principe

CIS = Photon-to-Voltage conversion (digital)

CMOS (Complementary Metal-Oxide Semiconductor)

- Each pixel has its own amplifier and readout circuit.
- Spectral range: \sim 350 nm to \sim 1050 nm
 - Similar to CCDs, since both use silicon photodiodes.
- Specialized coatings/microlenses can improve UV or NIR sensitivity.
- Peak QE: 60–85% (scientific CMOS can reach >90% with back-illumination).
- Parallel readout allows faster speeds.
- Pros: Low power, fast, integrated electronics
- Use: Consumer, space, adaptive optics and now Astronomy (VISIBLE)

Example of CMOS detectors

LISA (Large vISble cAmera – LVSM (WFS camera for ELT)

- The Large Adaptive Optics Visible Sensor Module ("LVSM").
- For use in high-order laser guide star (LGS)
 AO systems at visible wavelengths, as well as
 telescope guiding.

Evolution of ESO Detector Controllers

Evolution of ESO Detector Controllers

Evolution of ESO Detector Controllers

FIERA (Fast Imager Electronic Readout Assembly)

(Visible Spectrum)

- ➤ The first FIERA prototype was successfully demonstrated in October 1996 DSP-Based
- ESO developed a new generation CCD controller for the Very Large Telescope (VLT) and La Silla Observatory
- Operated reliably for decades and still in use across multiple instruments (FORS2, UVES, X-SHOOTER, FLAMES)

Evolution of ESO Detector Controllers

IRACE (Infrared Array Control Electronics) (InfraRed Spectrum)

- ➤ The first IRACE prototype was successfully demonstrated in October 1996-1998. FPGA-based
- ESO developed a new generation IR detector controller VLT and La Silla Observatory
- > Operated reliably for decades and still in use across multiple instruments (HAWKI, X-SHOOTER)

Evolution of ESO Detector Controllers

NGC (New General detector Controller

- ➤ After ~12 years (2008), both FIERA and IRACE are aging.
- ➤ The NGC controller is based on the Xilinx FPGA.
- ➤ The NGC controller is a modular, customizable system.
- > For Optical and Infrared Astronomical Applications
- ➤ Operated reliably for 16 years across multiple instruments (KMOS, CRIRES+, SPHERE, etc.)

Evolution of ESO Detector Controllers

NGC II (New General detector Controller) Version II

- ➤ Project officially started in 2020. First light with the CMOS detector was achieved in summer 2023
- ➤ Covering ELT new requirements like, 10 Gb Ethernet, RTMS (MUDPI), PTP, time stamping, etc.
- ➤ Compatibility with the NGC, regarding detector readout files, like Clock pattern, Sequencer files, etc.
- ➤ High degree of modularity and flexibility (MicroTCA.4 standard)
- ➤ Compact size and low volume
- > Synchronization of NGCII racks
- ➤ NGCII shall be able to readout all different types of detectors, with different readout speeds, number of output channels, etc.
- ➤ CMOS type detectors to be supported: Hawaii-2RG/4RG, SAPHIRA (32ch, 64ch) CCD type detectors to be supported: Teledyne e2v CCDs, CCD-231, CCD290-99, etc.

System Architecture

NGCII as a System

Evolution of ESO Detector Controllers

Upgrade of the Detector Controller

Upgrade of the Detector Controller

- **Decades of Legacy**: NGC evolved from over 30 years of ESO controller technology (FIERA + IRACE).
- Unified Platform: NGC supports both optical and IR detectors, reducing system diversity.
- Operational Risks: Failures in obsolete systems can cause extended instrument downtime.
- **Training Efficiency:** Standardizing controllers reduces the learning curve for engineers and technicians.
- Maintenance Simplification: One spare part inventory for NGC instead of separate stocks for multiple platforms.
- Future-Proofing: Aligns detector control capabilities with new-generation instrument requirements.
- Obsolescence Plan Alignment: Supports the Observatory's long-term strategy to reduce outdated systems.
- Next-Generation Integration: NGC II is the baseline controller for upcoming VLT and ELT instruments, ensuring compatibility and performance.

Upgrade of the Detector Controller

Strategic Focus with Universities

Main Goal

- Create a cryogenics & detector lab at a Chilean university to support UVB/VIS cryostat upgrades for X-Shooter (or UVES) in 2 phases (4 years).
- Replace FIERA with NGC II and evaluate $LN_2 \rightarrow pulse$ tube cryocooler transition.

Leverage Experience

- Build on Paranal's FIERA→NGC test bench (E2V CCD 88-42).
- Training/workshops with Paranal Detector Group.
- ESO Garching visits: NGC II integration, detector testing, pulse tube cryocooler expertise.

Innovation & Research

- Optimize detector readout modes.
- Reduce readout noise (HW/FW).
- Improve reliability of vacuum sensors.

Outcome: Modernized UVB/VIS arms, reduced obsolescence, stronger national expertise in detectors & cryogenics.

Upgrade of the Detector Controller

Two-Phase Plan (4 Years) (Proposal)

Phase 1 (Years 1-2) - Laboratory Setup & Pilot

- Establish cryogenics/detector lab with test bench modeled on Paranal FIERA→NGC using E2V CCD 88-42.
- Training & workshops from Paranal Detector Group; technical visit to ESO Garching for NGC II integration and Cryogenics Group pulse tube expertise.
- Pilot NGC II installation on UVB cryostat and initial pulse tube vs LN₂ evaluation.
- Begin research on readout mode optimization, readout noise reduction, and vacuum sensor reliability.

Phase 2 (Years 3-4) - Migration & Optimization

- Apply lessons from UVB to migrate VIS cryostat to NGC II.
- Install and test pulse tube on VIS cryostat with Garching Cryogenics Group methods.
- Deliver ESO-led university seminars/courses; finalize upgrades on both cryostats.

Detector Laboratory - Paranal

Connect with ESO

Thank you!

Javier Valenzuela jvalenzu@eso.org

- f @ESOAstronomy
- @esoastronomy
- ✓ @ESO
- in european-southern-observatory
- @ESOobservatory

