i -~ Australian

v {ﬂ §§ \// % == National
M =7 University

COSMIC

A Graph-Based, Extensible Framework for the Future
of Adaptive Optics RTC development

Julien Bernard

+]ES A
0

[

~ s MACQUARIE
e > University

uuuuuuuuuuuuuuuu

* INAF -:-] Australian —_
.................. K]
L _J bR~ ”2it¢g?§‘ilty

Introduction

e MAVIS is an instrument being built for the ESO’s VLT AOF.

e Come and watch Francgois Rigaut presentation: Entering the final design phase for the MAVIS RTC at
14:30!

MNANESS 2

v INAF =] Australian — AL
@ cTrmEas — - ")
- E’,‘:"'?,{Tﬁn‘f‘c,:_:‘i';':fi"i}(’Tf Sl ”raﬂt\:ce)?sailiy LABORATOIRE D°A' Hn’v:nul‘mf[N -

Summary

e The technical stack
e COSMIC evolution

e From prototype to RTC

MNANESS 3

[Australian —
|==-/ National
== University

The technical stack A LT &) S)

int sum = 0;
for (int i = 0; i < n; ++i)
sum += s[i];

MACQUARIE RiCH
University Q)

SYDNEY AUSTRALIA

e |anguage: C++23, python 3.13, CUDA 12

e \We opted to rely as much as possible to exiting
tools and libraries

return sum;

main() {
o CMake, pip and py-build-cmake (PEP 517 compliant build

backend) std::vector<int> v {1, 2, 3, 4, 5};
std::array<int, 5> = {1, 2, 3, 4, 5};

. . a
o Boost, pybind11, microsoft-gs|, Taskflow, matx, gtest, int arr[] = {1, 2, 3, 4, 5};

benchmark
sum(v.data(), v.size());
sum(a.data(), a.size());
e Use modern language and standard library sum(arr, 5);
features

sum(nullptr, 0);

o C++is an excessively complex language but nothing
impossible for a trained team and good practices

IMANYEISS

[Australian —
|==-/ National
== University

The technical StaCk int sum(std::span<int> s) {

int sum = 0;
for (int i : s)
sum += 1i;

MACQUARIE RiCH
University Q)

SYDNEY AUSTRALIA

e |anguage: C++23, python 3.13, CUDA 12

e \We opted to rely as much as possible to exiting
tools and libraries

return sum;

main() {
o CMake, pip and py-build-cmake (PEP 517 compliant build

backend) std::vector<int> v
std::array<int, 5>

o Boost, pybind11, microsoft-gs|, Taskflow, matx, gtest, int arr[] = {1, 2,

benchmark
sum(v);
sum(a);
e Use modern language and standard library sum(arr);
features

o C++is an excessively complex language but nothing
impossible for a trained team and good practices

IMANYEISS

.. :T?%inc:“ @ ﬁgfngﬁg?nm
. prsEsEines 5= University
CONAN: A C++ package manager CONAN 1

MACQUARIE
T University O
. +

nnnnnnnnnnnnnnn

e Decentralized package manager
e build helper

o manage configurations [Release, Config], [Static,
Shared], and more.

e Allow source or binary only package

e development mode ala pip install -e

e Allows to test new third-party library in minutes

server

package Pkg/0.1@user/channel

_/

. BaFkage i
binaries
recipe

Pkg/0.1@user/channel

v

=

GO0

S

® e sszignaLe] fautrallsn — S8 5 MACQUARIE [T
S psiie 5= University 7 [l &P DI by

CONAN: A C++ package manager CONAN 2

e Decentralized package manager
e Dbuild helper

o manage configurations [Release, Config], [Static,
Shared], and more.

e Allow source or binary only package
e development mode ala pip install -e

e Allows to test new third-party likrary 1> 1 . tes

serv

package

package
“binaries”

recipe

Pkg/0.1@user/channel

v

=

GO0

+ INAF -=-| Australian —_— LAM . MACQUARIE %
, AZIONALE : A % y : LES+
. E’:",\Eﬁ%%:;?ﬁlﬂr Q National % LABORATOIRE D'ASTROPHYSIOUE) > = University «3)

- PORRE PR SERIES —~ University MARSEILLE SYONEY.AUSTRALIA

The COSMIC evolution

N

Octopus

B -
Boost IPC FPGA NCCL

MNANESS

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

Fast prototyping

pol slopes[:] = slopes - D mat @ command_eff

e More hassle-free steps available
between a Simple python SCI’ipt and a modes[:] = (1 - gain) * modes - gain * (R_mat @ pol_slopes)
fully working RTC

e \Work as much as possible locally cmds = P_mat @ modes

e Use interactive language and
debugger

e Let's consider a simple POLC
example !

IMANYEISS

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

* INAF [Australian —_
@ cuuienszt | == National
- FORRETRSR VIS === University
Fast prototyping

marlin.registry.create("cuda:la:mvm", D _mat,
e More hassle-free steps available marlin.registry.create("cuda:la:mvm", R _mat,

_ _ marlin.registry.create("cuda:la:mvm", P_mat,
between a simple python script and a
fully working RTC

e \Work as much as possible Iocally D_mvm.compute(stream, command_eff, result slopes)

e Use interactive language and pol slopes[:] = slopes - result_slopes
debugger

R_mvm.compute(stream, pol slopes, result modes)

modes[:] = (1 - gain) * modes - gain * result modes
e Let's consider a simple POLC

example !

P_mvm.compute(stream, modes, cmds)

o Instantiate nodes locally

IMANYEISS

[Australian —_
|==-/ National
== University

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

Fast prototyping

matvec(slopes pol, D mat, cmds eff, stream);
e More hassle-free steps available (slopes _pol = slopes - slopes pol).run(stream);

between a simple python script and a

fuIIy Working RTC matvec(modes tmp, R _mat, slopes pol, stream);
(modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

e \Work as much as possible locally

e Use interactive language and matvec(cmds, P_mat, modes, stream);
debugger

e Let's consider a simple POLC
example !

o Instantiate nodes locally

o Port to C++/CUDA (using MatX)

IMANYEISS

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

* INAF [Australian —_
@ cuuienszt | == National
- FORRETRSR VIS === University
Fast prototyping

auto D mvm = cuda::la::mvm<float>(...);
auto R_mvm = cuda::la::mvm<float>(...);

e More hassle-free steps available auto P_mvm = cuda::la::mvm<float>(...);
between a simple python script and a
fuIIy Working RTC D mvm.compute(stream, slopes pol, cmds eff);

(slopes pol = slopes - slopes pol).run(stream);
e \Work as much as possible locally

e Use interactive Ianguage and R_mvm.compute(stream, modes tmp, R mat, slopes pol);
debugger (modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

P_mvm.compute(stream, cmds, P_mat, modes);

e Let's consider a simple POLC
example !
o Instantiate nodes locally
o Port to C++/CUDA (using MatX)

o Again, use locale node instances

IMANYEISS

Fast prototyping

e More hassle-free steps available
between a simple python script and a
fully working RTC

e \Work as much as possible locally

e Use interactive language and
debugger

e Let's consider a simple POLC
example !
o Instantiate nodes locally
o Port to C++/CUDA (using MatX)
o Again, use locale node instances

o Them you putitin a graph!

IMANYEISS

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

* INAF [Australian —_
@ cuuienszt | == National
. PARNRNARSIENI === University

ccg::children children; children.reserve(3);

children.emplace back([&](cudaStream_t stream){
D _mvm.compute(stream, slopes pol, cmds eff);
(slopes pol = slopes - slopes pol).run(stream);

Yoo eel)s

children.emplace back([&](cudaStream_t stream){
R_mvm.compute(stream, modes tmp, R _mat, slopes pol);
(modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

Yoo oeel)s

children.emplace back([&](cudaStream_t stream){
P_mvm.compute(stream, cmds, P_mat, modes);

Yoo ovel)s

coral::edges edges{ {0, 1}, {1, 2} };

auto pipeline = ccg::pipeline(std::move(children),
std: :move(edges));

Fast prototyping

e More hassle-free steps available
between a simple python script and a
fully working RTC

e \Work as much as possible locally

e Use interactive language and
debugger

e Let's consider a simple POLC

example !
o Instantiate nodes locally
o Port to C++/CUDA (using MatX)
o Again, use locale node instances
o Them you putitin a graph!
o And finally put it into a node and register it

IMANYEISS

MACQUARIE RiCH
University Q

SYDNEY AUSTRALIA

* INAF [Australian —_
@ cuuienszt | == National
. PARNRNARSIENI === University

struct Polc {
void compute(context ctx, span<float> slopes, span<float> cmds) {

D mvm.compute(ctx, slopes pol, cmds eff);
(slopes pol = slopes - slopes pol).run(ctx.stream);

R_mvm.compute(ctx, modes tmp, R mat, slopes pol);
(modes = (1 - gain) * modes - gain * modes_tmp).run(ctx.stream);

P_mvm.compute(ctx, cmds, P_mat, modes);

}
1

MARLIN_REGISTER(m) {
class_<Pocl>(“cuda:mavis:Polc", m)
.def("compute", &Polc::compute)
.def_poperty("D", &Polc::D_mvm)
.def_poperty("R", &Polc::R_mvm)
.def_poperty("P", &Polc::P_mvm);

Fast prototyping

e More hassle-free steps available
between a simple python script and a
fully working RTC

e \Work as much as possible locally

e Use interactive language and
debugger

e Let's consider a simple POLC
example !

O

O

O

o

O

Instantiate nodes locally

Port to C++/CUDA (using MatX)
Again, use locale node instances
Them you put it in a graph!

And finally put it into a node and register it

IMANYEISS

[Australian —_
|==-/ National
== University

polc = marlin.registry.create("cuda:mavis:Polc",

polc.compute(stream, slopes, cmds)

MACQUARIE
University

SYDNEY AUSTRALIA

+

* INAF [-] Australian —_
@ cuuienszt | == National
. pavRRRRSENLES S=7 University

MACQUARIE RiCH
University Q)

SYDNEY AUSTRALIA

Coral
node:
e A direct acyclic graph library with support for E;giil”e
hardware accelerators and complex control-flows adaptor
pipeline:
e Fixed specification node* + dep*
e Control flow utilities dep:

index + index
e Adaptor utilities
logic:
conditional
switch
while

e Support for:

o Host pipeline execution using Taskflow

conditional | switch | while :
node + condition

o Asynchronous host execution using C++ coroutines
(experimental)

o CUDA pipeline execution adaptor:

node (other)
launcher:

node & contex

17

IMANYEISS

« INAF

® e ﬁn*t°l‘ty A0 RS Uierary - R
CORAL CUDA pipeline model
e GPU execution perform better with asynchronous
execution
e We only focus on scheduling operations in the
right order on the host. CUDA runtime takes care
of the rest
. o 2 Ker 1 Ker 2 ker 3 ker 4 ker 5
e Until CUDA 12, we were limited
using simple DAG without control \
flow i s 1"
5 i = l’ NN |
= process 1 process 2 cuda syne
unue1 F Node 2 powat o f
—- —

MNANESS

18

-=-| Australian —
\===-/ National
== University

MACQUARIE &%
"=M University Q)

SYDNEY AUSTRALIA

CORAL CUDA pipeline model

e Thanks to CUDA 12 it is now possible to

implement complex control flow on device using
device cuda graph.

e For now, we have 3 types of control flow:
condition, switch and while

auto condition =
coral::cuda::logic::predicate_launcher(conditional op{});

auto graph = ccg::logic::conditional graph(node, condition);

AN S)

-=-| Australian —
\===-/ National
== University

MACQUARIE &%
"=M University Q)

SYDNEY AUSTRALIA

CORAL CUDA pipeline model

e Thanks to CUDA 12 it is now possible to

implement complex control flow on device using A
device cuda graph.

e For now, we have 3 types of control flow:
condition, switch and while

auto condition =
coral::cuda::logic::while_launcher(conditional_op{});

auto graph = ccg::logic::while_ graph(node, condition);

AN S ’

Thanks for you attention !

Questions ?

	Slide 1: COSMIC A Graph-Based, Extensible Framework for the Future of Adaptive Optics RTC development
	Slide 2: Introduction
	Slide 3: Summary
	Slide 4: The technical stack
	Slide 5: The technical stack
	Slide 7: CONAN: A C++ package manager
	Slide 8: CONAN: A C++ package manager
	Slide 9: The COSMIC evolution
	Slide 10: Fast prototyping
	Slide 11: Fast prototyping
	Slide 12: Fast prototyping
	Slide 13: Fast prototyping
	Slide 14: Fast prototyping
	Slide 15: Fast prototyping
	Slide 16: Fast prototyping
	Slide 17: Coral
	Slide 18: CORAL CUDA pipeline model
	Slide 19: CORAL CUDA pipeline model
	Slide 20: CORAL CUDA pipeline model
	Slide 23: Thanks for you attention !
	Slide 24: Questions ?

