
COSMIC
A Graph-Based, Extensible Framework for the Future
of Adaptive Optics RTC development

Julien Bernard

1

Introduction

2

● MAVIS is an instrument being built for the ESO’s VLT AOF.

● Come and watch François Rigaut presentation: Entering the final design phase for the MAVIS RTC at

14:30 !

COSMIC Next

Summary

3

● The technical stack

● COSMIC evolution

● From prototype to RTC

COSMIC Next

4

The technical stack

COSMIC Next

● Language: C++23, python 3.13, CUDA 12

● We opted to rely as much as possible to exiting

tools and libraries

○ CMake, pip and py-build-cmake (PEP 517 compliant build

backend)

○ Boost, pybind11, microsoft-gsl, Taskflow, matx, gtest,

benchmark

● Use modern language and standard library

features

○ C++ is an excessively complex language but nothing

impossible for a trained team and good practices

int sum(int* s, int n) {
int sum = 0;
for (int i = 0; i < n; ++i)

sum += s[i];

return sum;
}

int main() {

std::vector<int> v = {1, 2, 3, 4, 5};
std::array<int, 5> a = {1, 2, 3, 4, 5};
int arr[] = {1, 2, 3, 4, 5};

sum(v.data(), v.size());
sum(a.data(), a.size());
sum(arr, 5);

sum(nullptr, 0); // What happens here?

}

The technical stack

COSMIC Next

● Language: C++23, python 3.13, CUDA 12

● We opted to rely as much as possible to exiting

tools and libraries

○ CMake, pip and py-build-cmake (PEP 517 compliant build

backend)

○ Boost, pybind11, microsoft-gsl, Taskflow, matx, gtest,

benchmark

● Use modern language and standard library

features

○ C++ is an excessively complex language but nothing

impossible for a trained team and good practices

int sum(std::span<int> s) {
int sum = 0;
for (int i : s)

sum += i;

return sum;
}

int main() {

std::vector<int> v = {1, 2, 3, 4, 5};
std::array<int, 5> a = {1, 2, 3, 4, 5};
int arr[] = {1, 2, 3, 4, 5};

sum(v);
sum(a);
sum(arr);

// sum(nullptr); It's not working anymore !

}

7

CONAN: A C++ package manager

COSMIC Next

● Decentralized package manager

● build helper
○ manage configurations [Release, Config], [Static,

Shared], and more.

● Allow source or binary only package

● development mode à la pip install –e

● Allows to test new third-party library in minutes

CONAN 1

8

CONAN: A C++ package manager

COSMIC Next

● Decentralized package manager

● build helper
○ manage configurations [Release, Config], [Static,

Shared], and more.

● Allow source or binary only package

● development mode à la pip install –e

● Allows to test new third-party library in minutes

CONAN 2

9

The COSMIC evolution

COSMIC Next

10

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

reconstruct pseudo-open-loop slopes:
pol_slopes[:] = slopes - D_mat @ command_eff

project POL slopes to mode space, and filter them with IIR "gain"
modes[:] = (1 - gain) * modes - gain * (R_mat @ pol_slopes)

project modes to actuator space:
cmds = P_mat @ modes

11

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

D_mvm = marlin.registry.create("cuda:la:mvm", D_mat, ...)
R_mvm = marlin.registry.create("cuda:la:mvm", R_mat, ...)
P_mvm = marlin.registry.create("cuda:la:mvm", P_mat, ...)

...

D_mvm.compute(stream, command_eff, result_slopes)

pol_slopes[:] = slopes - result_slopes

R_mvm.compute(stream, pol_slopes, result_modes)

modes[:] = (1 - gain) * modes - gain * result_modes

P_mvm.compute(stream, modes, cmds)

12

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

○ Port to C++/CUDA (using MatX)

// reconstruct pseudo-open-loop slopes:
matvec(slopes_pol, D_mat, cmds_eff, stream);
(slopes_pol = slopes - slopes_pol).run(stream);

// project POL slopes to mode space, and filter them with IIR "gain"
matvec(modes_tmp, R_mat, slopes_pol, stream);
(modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

// project modes to actuator space:
matvec(cmds, P_mat, modes, stream);

13

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

○ Port to C++/CUDA (using MatX)

○ Again, use locale node instances

auto D_mvm = cuda::la::mvm<float>(...);
auto R_mvm = cuda::la::mvm<float>(...);
auto P_mvm = cuda::la::mvm<float>(...);

// reconstruct pseudo-open-loop slopes:
D_mvm.compute(stream, slopes_pol, cmds_eff);
(slopes_pol = slopes - slopes_pol).run(stream);

// project POL slopes to mode space, and filter them with IIR "gain"
R_mvm.compute(stream, modes_tmp, R_mat, slopes_pol);
(modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

// project modes to actuator space:
P_mvm.compute(stream, cmds, P_mat, modes);

14

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

○ Port to C++/CUDA (using MatX)

○ Again, use locale node instances

○ Them you put it in a graph !

ccg::children children; children.reserve(3);

// reconstruct pseudo-open-loop slopes:
children.emplace_back([&](cudaStream_t stream){

D_mvm.compute(stream, slopes_pol, cmds_eff);
(slopes_pol = slopes - slopes_pol).run(stream);

}, ...);

// project POL slopes to mode space, and filter them with IIR "gain"
children.emplace_back([&](cudaStream_t stream){

R_mvm.compute(stream, modes_tmp, R_mat, slopes_pol);
(modes = (1 - gain) * modes - gain * modes_tmp).run(stream);

}, ...);

// project modes to actuator space:
children.emplace_back([&](cudaStream_t stream){

P_mvm.compute(stream, cmds, P_mat, modes);
}, ...);

coral::edges edges{ {0, 1}, {1, 2} };

auto pipeline = ccg::pipeline(std::move(children),
std::move(edges));

15

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

○ Port to C++/CUDA (using MatX)

○ Again, use locale node instances

○ Them you put it in a graph !

○ And finally put it into a node and register it

struct Polc {
void compute(context ctx, span<float> slopes, span<float> cmds) {

// reconstruct pseudo-open-loop slopes:
D_mvm.compute(ctx, slopes_pol, cmds_eff);
(slopes_pol = slopes - slopes_pol).run(ctx.stream);

// project POL slopes to mode space, and filter them with IIR...
R_mvm.compute(ctx, modes_tmp, R_mat, slopes_pol);
(modes = (1 - gain) * modes - gain * modes_tmp).run(ctx.stream);

// project modes to actuator space:
P_mvm.compute(ctx, cmds, P_mat, modes);

}
};

MARLIN_REGISTER(m) {
class_<Pocl>(“cuda:mavis:Polc", m)

.def("compute", &Polc::compute)

.def_poperty("D", &Polc::D_mvm)

.def_poperty("R", &Polc::R_mvm)

.def_poperty("P", &Polc::P_mvm);
}

16

Fast prototyping

COSMIC Next

● More hassle-free steps available

between a simple python script and a

fully working RTC

● Work as much as possible locally

● Use interactive language and

debugger

● Let's consider a simple POLC

example !

○ Instantiate nodes locally

○ Port to C++/CUDA (using MatX)

○ Again, use locale node instances

○ Them you put it in a graph !

○ And finally put it into a node and register it

polc = marlin.registry.create("cuda:mavis:Polc", ...)

polc.compute(stream, slopes, cmds)

17

Coral

COSMIC Next

● A direct acyclic graph library with support for

hardware accelerators and complex control-flows

● Fixed specification

● Control flow utilities

● Adaptor utilities

● Support for:

○ Host pipeline execution using Taskflow

○ Asynchronous host execution using C++ coroutines

(experimental)

○ CUDA pipeline execution

node:
pipeline
logic
adaptor

pipeline:
node* + dep*

dep:
index + index

logic:
conditional
switch
while

conditional | switch | while :
node + condition

adaptor:
node (other)

launcher:
node & contex

18

CORAL CUDA pipeline model

COSMIC Next

● GPU execution perform better with asynchronous

execution

● We only focus on scheduling operations in the

right order on the host. CUDA runtime takes care

of the rest

● Until CUDA 12, we were limited

using simple DAG without control

flow

19

CORAL CUDA pipeline model

COSMIC Next

● Thanks to CUDA 12 it is now possible to

implement complex control flow on device using

device cuda graph.

● For now, we have 3 types of control flow:

condition, switch and while

auto condition =
coral::cuda::logic::predicate_launcher(conditional_op{});

auto graph = ccg::logic::conditional_graph(node, condition);

20

CORAL CUDA pipeline model

COSMIC Next

● Thanks to CUDA 12 it is now possible to

implement complex control flow on device using

device cuda graph.

● For now, we have 3 types of control flow:

condition, switch and while

auto condition =
coral::cuda::logic::while_launcher(conditional_op{});

auto graph = ccg::logic::while_graph(node, condition);

Thanks for you attention !

23

Questions ?

24

	Slide 1: COSMIC A Graph-Based, Extensible Framework for the Future of Adaptive Optics RTC development
	Slide 2: Introduction
	Slide 3: Summary
	Slide 4: The technical stack
	Slide 5: The technical stack
	Slide 7: CONAN: A C++ package manager
	Slide 8: CONAN: A C++ package manager
	Slide 9: The COSMIC evolution
	Slide 10: Fast prototyping
	Slide 11: Fast prototyping
	Slide 12: Fast prototyping
	Slide 13: Fast prototyping
	Slide 14: Fast prototyping
	Slide 15: Fast prototyping
	Slide 16: Fast prototyping
	Slide 17: Coral
	Slide 18: CORAL CUDA pipeline model
	Slide 19: CORAL CUDA pipeline model
	Slide 20: CORAL CUDA pipeline model
	Slide 23: Thanks for you attention !
	Slide 24: Questions ?

