

COSMIC: AN ADPTABLE, POWERFUL AND PROVEN RTC PLATFORM

Damien Gratadour

ACKNOWLEDGMENTS

- Observatoire de Paris Université PSL
 - F. Ferreira, A. Sevin, J. Plante and C. Cetre
- Research School of Astronomy & Astrophysics, ANU
 - J. Smith, C. Gretton, N. Doucet, J. Cranney, J. Bernard and F. Rigaut
- Extreme Computing Research Center, KAUST
 - H. Ltaief, Y. Hong & D. Keyes
- Innovative Computing Laboratory, UTK
 - o Q. Cao, Y. Pei, G. Bosilca, J. Dongarra
- NVIDIA
 - S. Jones and I. Said
- Barcelona Supercomputing Center & UPC
 - B. Pou Mulet, E. Quinones & M. Martin

ADAPTIVE OPTICS FOR GIANT TELESCOPES

Control in real-time the shape of the incoming wavefront

- Sensors are cameras equipped with an optical device (lenslet array, pyramidal prism, etc...)
- Deformable mirrors
 to compensate for
 wavefront distortions
- Typical rate of operation is 1kHz
- Compute pipeline latency below
 1 millisecond
- Stable time-to-solution is critical to ensure stable Operations (jitter of the order of 10s of µs)

"CLASSICAL ML" (OR MODEL DRIVEN ML) FOR AO

AO is this kind of instrumentation that involves a lot of numerical tools

AO RTC GLOBAL SYSTEM ARCHITECTURE

Based on heterogeneous architecture to implement main functions

- Cope with various functional & non-functional requirements for the different sub-systems
- Mix high throughput Machine Learning (supervisor, a.k.a. SRTC) with low latency & low jitter computing (real-time controller, a.k.a. HRTC)

AO RTC HARDWARE COMPONENTS

Typical functional decomposition

- Mostly aligned with SPARTA / ESO specifications
- Including simulator sub-system

AO RTC SOFTWARE COMPONENTS

4 components:

- OCEAN, SHIPS, TIDES and COMPASS
- Integration with ESO's RTC Toolkit

HRTC SW DESIGN

Core pipeline, made highly modular through the Marlin library

CORE FEATURES

- Python interface: user-friendly RTC, configuration / execution made easy
- Multiple processes interacting in real-time: BUs encapsulating kernels
 - Any kind of kernels, including standard libraries: BLAS, FFT (highly portable)
- Same interface across the pipeline: RT data streams, Configuration parameters (FPS), Telemetry (handled by independent processes)
 - But different shared memory domains !
- Trade-off between **modularity and efficiency**: BUs can be grouped into **containers** to reproduce main functions while integrating sub-functions:
 - Example of WFS data processing: include pixel processing + centroiding and work on multiple WFS
 - Each sub-function is a BU (can be debugged / tested individually) all regrouped in a single container (i.e. uses a single process)
 - Stream programming provides concurrent kernels execution when needed

COSMIC platform

TYPICAL HRTC PERFORMANCE

- WFS frames are sent by a hardware emulator at a regular rate (1 kHz)
- GPU is mostly "actively waiting"

TYPICAL HRTC PERFORMANCE

- WFS frames are sent by a hardware emulator at a regular rate (1 kHz)
- GPU is mostly "actively waiting"

COSMIC platform

TYPICAL HRTC PERFORMANCE

- WFS frames are sent by a hardware emulator at a regular rate (1 kHz)
- GPU is mostly "actively waiting"

TYPICAL HRTC PERFORMANCE

- WFS frames are sent by a hardware emulator at a regular rate (1 kHz)
- GPU is mostly "actively waiting"

TYPICAL HRTC PERFORMANCE

Comparison of end-to-end latency on several GPU generations

- MAVIS case (5k x 20k command matrix)
- Mostly memory bound: benefit from increased mem. bandwidth between V100 and A100
- Almost perfect scaling !

ADAPTABLE, POWERFUL ... AND PROVEN RTC PLATFORM

Facility instruments

- Keck: already online, delivering science (see R. Biasi's talk)
- Micado: being integrated (see F. Ferreira's talk)
- MAVIS: final design phase, passed preliminary design
 - Global design and results: see F. Rigaut's talk
 - SRTC architecture & benchmarking: see N. Doucet's talk
- **SPHERE+**: preliminary design phase
- (NenuFAR): important building blocks (e.g. data ingestion) tested and integrated on radio-telescope for transients detection (see J. Plante's talk)

Lab experiments

- GHOST @ ESO: used to drive the AO bench and interface with ML (see Jalo's talk)
- LabRTC @ INAF: used for prototyping (incl. on-sky) new WFS concepts
- Micado demo @ LESIA (up and running at scale, see Florian's talk)

Adaptable, Powerful ... And Future- Proof!

A closer look at the tomographic reconstructor

- Tomography + predictive control
- Apparently very structured:
 - can be connected to system parameters (WFS dimensioning)
 - Very low structural dependency wrt turbulence parameters

-0.00074	-6.7e-05	0.00038	0.00071	0.00097	0.0012	0.0014	0.0015	0.0017	

A closer look at the tomographic reconstructor

- Tomography + predictive control
- Apparently very structured:
 - can be connected to system parameters (WFS dimensioning)
 - Very low structural dependency wrt turbulence parameters

IMPROVING PERFORMANCE PORTABILITY

Ranks analysis: splitting the matrix into tiles and looking at ranks

- **Tiles size aligned with system parameters** (¹/₄ of the number of subapertures per WFS -- taking into account circular symmetry properties)
- A vast majority of the tiles have low ranks (i.e., smaller than half of the tile size) => data sparse, opportunity for low-rank approximations

IMPROVING PERFORMANCE PORTABILITY

Ranks analysis: splitting the matrix into tiles and looking at ranks

- Tiles size aligned with system parameters
- Mapping the rank / tile across the whole matrix
- Assuming constant tile size, ranks inhomogeneously distributed

Accuracy versus tiles size versus speedup

• Exploring compression opportunities (tile sizes & accuracy requirements)

Accuracy versus tiles size versus speedup

- Exploring compression opportunities (tile sizes & accuracy requirements)
- x4 speedup with compression leads to acceptable loss in AO performance

IMPROVING PERFORMANCE PORTABILITY

How to leverage that ?

COSMIC platform

IMPROVING PERFORMANCE PORTABILITY

Tile Low Rank (TLR) MVM

IMPROVING PERFORMANCE PORTABILITY

Tile Low Rank (TLR) MVM

Tile Low Rank (TLR) MVM: porting on Nvidia GPUs

- Leveraging CUDA streams and Graphs in a single approach
- Assessing performance scalability across several generations
- Sustained speedup > x2: a single GPU needed to meet performance goals.

Tile Low Rank (TLR) MVM: comparing against hardware landscape

Vendor	Intel	AMD	Fujitsu	NEC	NVIDIA	Graphcore
Family	Cascade	EPYC	Primergy	SX-Aurora	Ampere	IPU
	Lake	Milan	A64FX	TSUBASA	GPU	
Model	6248	7713	FX1000	B300-8	A100	Bow
Node(s)/Card(s)	1	1	16	8	1	1
$\mathbf{Socket}(\mathbf{s})$	2	2	4	N/A	N/A	1
Cores	40	128	48	8	6912	1472
GHz	2.5	2.0	2.2	1.6	2.6	1.85
Memory	384GB DDR4	512GB DDR4	32GB HBM	48GB HBM2	40GB HBM2e	3.6GB
Sustained BW	$232 \mathrm{GB/s}$	$330 \mathrm{GB/s}$	$800 \mathrm{GB/s}$	$1.5 \mathrm{TB/s}$	$1.5 \mathrm{TB/s}$	$261 \mathrm{TB/s}$
LLC	27.5MB	512MB	32MB	16MB	40MB	N/A
Sustained BW	$1.1 \mathrm{TB/s}$	$4 \mathrm{TB/s}$	$3.6 \mathrm{TB/s}$	$2.1 \mathrm{TB/s}$	$4.8 \mathrm{TB/s}$	
Compiler	Intel 19.1.0	GCC 7.5.0	Fujitsu 4.5.0	NEC 3.1.1	NVCC 11.0	POPLAR 2.6
BLAS library	Intel MKL 2020	BLIS 3.0.0	Fujitsu SSL II	NEC NLC 2.1.0	cuBLAS 11.0	N/A
MPI library	OpenMPI 4.0.3	OpenMPI 3.1.2	Fujitsu MPI 4.0.1	NEC MPI 2.13.0	NCCL 2.0	N/A

x86 - ARM - Vector

MPI + OpenMP

GPU CUDA

Tile Low Rank (TLR) MVM: comparing against hardware landscape

Vendor	Intel	AMD	Fujitsu	NEC	NVIDIA	Graphcore
Family	Cascade	EPYC	Primergy	SX-Aurora	Ampere	IPU
	Lake	Milan	A64FX	TSUBASA	GPU	
Model	6248	7713	FX1000	B300-8	A100	Bow
Node(s)/Card(s)	1	1	16	8	1	1
$\mathbf{Socket}(\mathbf{s})$	2	2	4	N/A	N/A	1
Cores	40	128	48	8	6912	1472
GHz	2.5	2.0	2.2	1.6	2.6	1.00
Memory	384GB DDR4	512GB DDR4	32GB HBM	48GB HBM2	40GB HBM2e	3.6GB
Sustained BW	$232 \mathrm{GB/s}$	$330 \mathrm{GB/s}$	$800 \mathrm{GB/s}$	$1.5 \mathrm{TB/s}$	$1.5 \mathrm{TB/s}$	261 TB/s
LLC	27.5MB	512MB	32MB	16MB	40MB	N/A
Sustained BW	$1.1 \mathrm{TB/s}$	$4 \mathrm{TB/s}$	$3.6 \mathrm{TB/s}$	$2.1 \mathrm{TB/s}$	$4.8 \mathrm{TB/s}$	
Compiler	Intel 19.1.0	GCC 7.5.0	Fujitsu 4.5.0	NEC 3.1.1	NVCC 11.0	POPLAR 2.6
BLAS library	Intel MKL 2020	BLIS 3.0.0	Fujitsu SSL II	NEC NLC 2.1.0	cuBLAS 11.0	N/A
MPI library	OpenMPI 4.0.3	OpenMPI 3.1.2	Fujitsu MPI 4.0.1	NEC MPI 2.13.0	NCCL 2.0	N/A

x86 - ARM - Vector

MPI + OpenMP

GPU CUDA

IMPROVING PERFORMANCE PORTABILITY

Tile Low Rank (TLR) MVM: steering customized AI hardware from Graphcore

- x5 performance improvement as compared to state-of-the-art high memory bandwidth general purpose processors !
- Opens new opportunities: mixing classical + AI workflows ...

DESIGNING A NEW BRAIN FOR AO

Complex, multi-physics problem: building a new brain requires multiple flavors of AI mixed with HPC workloads

COSMIC platform

WFS IMAGE DENOISING

Denoising with autoencoders: supervised learning

• Autoencoder: Supervised learning with a sample of noisy frames as input and same frames without noise (obtained with simulator)

- Could be trained on bench using calibration source tuned to the right brightness
- "Lightweigth" network, could be loaded on the frame grabber itself (looking into FPGA implementation as well as DPU)

AO CONTROL

An example of Reinforcement Learning: predictive control

- Soft Actor-Critic, model free
- Need to define a reward
 - Ideal case: access to phase variance
 - Works with slopes variance
- Exemple time series of commands to a mode

ADAPTABLE, POWERFUL ... AND FUTURE-PROOF

Optimized HPC workflows workflows

- **Performance portability**: leveraging OpenMP + graphs (see C. Cetre's talk)
- Standardized graph-based representation: using open C++ standards and more (see J. Bernard's talk)
- Leveraging mixed precision: optimizing Learn & Apply in SRTC for high cadence turbulence profiling (see N. Doucet's talk)
- Towards multi-100 Gb/s data ingestion: using standard libraries & toolkits (see J. Plante's talk)

Al integration

- Dual-stage XAO control with generative AI and reinforcement learning: see B.
 Pou's talk
- Super-resolution + PSF reconstruction: **see J. Smith's talk**

SUPPORTING INITIATIVES

STREAMS: a continuous integration platform

- ~1M€ hardware budget
- built around x10 Tb/s backbone
- Significant donations from vendors (NVidia, Graphcore)
- Strong contributions from industry partners (Thales, REFLEX CES)
- Collaboration with IDRIS (host), GENCI and other partners
- Additional partnerships being discussed ...
- Will be testing many technologies: incl. A100x DPUs, H100 & Mi250 GPUs, Genoa CPUs, Graphcore's IPUs and more

SUPPORTING INITIATIVES

PEPR ORIGINES: we are hiring !

- New AI methodologies and high bandwidth data transport for XAO @ ELT scale
- Several positions opened (PhDs, post-docs, research engineers)
- Please talk with F. Ferreira if interested

That's it for today !