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Adaptive Optics for giant telescopes

Control in real-time the shape of the incoming wavefront

● Sensors are cameras equipped with an optical device (lenslet array, 

pyramidal prism, etc…)

● Deformable mirrors 

to compensate for

wavefront distortions

● Typical rate of 

operation is 1kHz

● Compute pipeline 

latency below 

1 millisecond

● Stable time-to-solution

is critical to ensure stable 

Operations (jitter of the 

order of 10s of µs) 

3

COSMIC platform



“Classical ML” (or Model Driven ML) for AO

AO is this kind of instrumentation that involves a lot of numerical tools
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Wavefront Reconstruction:

● Linear relationship

WFS -> Actuators

● Results from turbulence

profiling used to built

the linear reconstructor

(regularization term)

● Non-linear approaches

to avoid the burden of 

dense linear algebra 

(but same assumptions)

NCPA estimation

● Non-Linear relationship

Image -> Actuators

● Non-linear reconstruction 

process (max likelihood)

Turbulence Profiling

● Complex model

turbulence -> 

measurements

● Iterative reconstruction 

process (cost function 

optimization)

PSF reconstruction

● Careful error budget 

modeling

● Linear reconstruction

● Limited to long exposureCorrected
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AO RTC Global system architecture

Based on heterogeneous architecture to implement main functions

● Cope with various functional & non-functional requirements for the different 

sub-systems

● Mix high throughput Machine Learning (supervisor, a.k.a. SRTC) with low 

latency & low jitter computing (real-time controller, a.k.a. HRTC)
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AO RTC Hardware components

Typical functional decomposition

● Mostly aligned with SPARTA / ESO specifications

● Including simulator sub-system
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AO RTC Software components

4 components: 

● OCEAN, SHIPS, TIDES and COMPASS

● Integration with ESO’s RTC Toolkit
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HRTC SW design

Core pipeline, made highly modular through the Marlin library
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Core features

● Python interface: user-friendly RTC, configuration / execution made easy

● Multiple processes interacting in real-time: BUs encapsulating kernels

○ Any kind of kernels, including standard libraries: BLAS, FFT (highly portable)

● Same interface across the pipeline: RT data streams, Configuration 

parameters (FPS), Telemetry (handled by independent processes)

○ But different shared memory domains !

● Trade-off between modularity and efficiency: BUs can be grouped into 

containers to reproduce main functions while integrating sub-functions:

○ Example of WFS data processing: include pixel processing + centroiding and 

work on multiple WFS

○ Each sub-function is a BU (can be debugged / tested individually) all regrouped in 

a single container (i.e. uses a single process)

○ Stream programming provides concurrent kernels execution when needed
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Typical HRTC performance

Representative pipeline including frame transfer + centroiding + MVM

● WFS frames are sent by a hardware emulator at a regular rate (1 kHz)

● GPU is mostly “actively waiting”
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Typical HRTC performance

Comparison of end-to-end latency on several GPU generations 

● MAVIS case (5k x 20k command matrix)

● Mostly memory bound: benefit from increased mem. bandwidth between 

V100 and A100

● Almost perfect scaling !

14

COSMIC platform



Adaptable, powerful … and proven RTC platform

Facility instruments

● Keck: already online, delivering science (see R. Biasi’s talk)

● Micado: being integrated (see F. Ferreira’s talk) 

● MAVIS: final design phase, passed preliminary design

● Global design and results: see F. Rigaut’s talk

● SRTC architecture & benchmarking: see N. Doucet’s talk

● SPHERE+: preliminary design phase

● (NenuFAR): important building blocks (e.g. data ingestion) tested and 

integrated on radio-telescope for transients detection (see J. Plante’s talk)

Lab experiments

● GHOST @ ESO: used to drive the AO bench and interface with ML (see 

Jalo’s talk)

● LabRTC @ INAF: used for prototyping (incl. on-sky) new WFS concepts

● Micado demo @ LESIA (up and running at scale, see Florian’s talk)
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Adaptable, Powerful … and 
Future- Proof !
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Improving performance portability

A closer look at the tomographic reconstructor

● Tomography + predictive control

● Apparently very structured: 

● can be connected to system parameters (WFS dimensioning)

● Very low structural dependency wrt turbulence parameters
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Improving performance portability

Ranks analysis: splitting the matrix into tiles and looking at ranks

● Tiles size aligned with system parameters (¼ of the number of 

subapertures per WFS -- taking into account circular symmetry properties)

● A vast majority of the tiles have low ranks (i.e., smaller than half of the tile 

size) => data sparse, opportunity for low-rank approximations
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Improving performance portability

Ranks analysis: splitting the matrix into tiles and looking at ranks

● Tiles size aligned with system parameters

● Mapping the rank / tile across the whole matrix

● Assuming constant tile size, ranks inhomogeneously distributed
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Improving performance portability

Accuracy versus tiles size versus speedup 

● Exploring compression opportunities (tile sizes & accuracy requirements)
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Improving performance portability

Accuracy versus tiles size versus speedup 

● Exploring compression opportunities (tile sizes & accuracy requirements)

● x4 speedup with compression leads to acceptable loss in AO 

performance
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Improving performance portability

How to leverage that ?
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Tile Dense

Matrix-Vector Multiplication

A
4 x 6 tiles
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Improving performance portability

Tile Low Rank (TLR) MVM
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A
4 x 6 tiles

U bases

V bases

x
Ranks can be 

different
Only once 

upfront!

y

Compress

SVD-like Algorithms



Improving performance portability

Tile Low Rank (TLR) MVM
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Improving performance portability

Tile Low Rank (TLR) MVM: porting on Nvidia GPUs

● Leveraging CUDA streams and Graphs in a single approach

● Assessing performance scalability across several generations

● Sustained speedup > x2: a single GPU needed to meet performance 

goals.
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Improving performance portability

Tile Low Rank (TLR) MVM: comparing against hardware landscape
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Improving performance portability

Tile Low Rank (TLR) MVM: steering customized AI hardware from Graphcore

● x5 performance improvement as compared to state-of-the-art high memory 

bandwidth general purpose processors !

● Opens new opportunities: mixing classical + AI workflows …
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Designing a new brain for AO
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Complex, multi-physics problem: building a new brain requires multiple flavors of 

AI mixed with HPC workloads

● Sensors data: mitigate noise, improve linearity, 

merge multiple sensors

● Deformable mirrors:  

improve resolution

● Pipeline latency: 

enable predictive control

● Variable conditions:

self-adapting controller

● Stable time-to-solution

real-time inference, 

deterministic 

time-to-solution
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WFS image denoising

Denoising with autoencoders: supervised learning

● Autoencoder: Supervised learning with a sample of noisy frames as input 

and same frames without noise (obtained with simulator)

● Could be trained on bench using calibration source tuned to the right 

brightness

● “Lightweigth” network, could be loaded on the frame grabber itself (looking 

into FPGA implementation as well as DPU)
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AO control

An example of Reinforcement Learning: 

predictive control

● Soft Actor-Critic, model free

● Need to define a reward

○ Ideal case: access to phase variance

○ Works with slopes variance

● Exemple time series of commands to a 

mode
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Adaptable, powerful … and Future-Proof

Optimized HPC workflows workflows

● Performance portability: leveraging OpenMP + graphs (see C. Cetre’s talk)

● Standardized graph-based representation: using open C++ standards and 

more (see J. Bernard’s talk) 

● Leveraging mixed precision: optimizing Learn & Apply in SRTC for high 

cadence turbulence profiling (see N. Doucet’s talk)

● Towards multi-100 Gb/s data ingestion: using standard libraries & toolkits 

(see J. Plante’s talk) 

AI integration

● Dual-stage XAO control with generative AI and reinforcement learning: see B. 

Pou’s talk

● Super-resolution + PSF reconstruction: see J. Smith’s talk
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Supporting initiatives

STREAMS: a continuous integration platform

● ~1M€ hardware budget 

● built around x10 Tb/s backbone

● Significant donations from vendors 

(NVidia, Graphcore)

● Strong contributions from industry 

partners (Thales, REFLEX CES)

● Collaboration with IDRIS (host), 

GENCI and other partners

● Additional partnerships being 

discussed ...

● Will be testing many technologies: 

incl. A100x DPUs, H100 & Mi250 GPUs, 

Genoa CPUs, Graphcore’s IPUs and

more
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Supporting initiatives

PEPR ORIGINES: we are hiring !
● New AI methodologies and high bandwidth data transport for XAO @ ELT 

scale

● Several positions opened (PhDs, post-docs, research engineers)

● Please talk with F. Ferreira if interested 
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That’s it for today !
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