AO4RTC Workshop

GRAVITY+ RTC Design

Roderick Dembet On behalf of the GPAO RTC Team

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

GRAVITY+ Project Overview

06/11/2023

- Milestone 1 Review : February 2022
- Milestone 2 Review : July 2022
- Milestone 3 Review : September 2023
- PAE : April 2024
- Hardware to Paranal : July 2024
- Commissioning Start : August 2024

GPAO RTC Hardware Overview

4 RTC Cabinets : CoolRack CW water cooled 11,61 kW, 800 +150 mm x1200x2100 By Lehmann IT

Will be installed in the 4 UT Outer Rings

23 Dell Servers Cisco Hardware (switches, SFP modules, transceivers)

Interface Boards : Intel X710-T4 NICs NewWaveDV V5051 sFPDP board

GPAO RTC Design Overview

記法

06/11/2023

AO4RTC Workshop

LESIA l'Observatoire | PSL 🔀

5

SPARTA Upgrade Baseline

06/11/2023

SRTC Overview

06/11/2023 AO4RTC Workshop

SRTC Overview

06/11/2023

AO4RTC Workshop

LESIA (Observatoire | PSL 🔀

8

HRTC Overview

2 x AMD Epyc 7702 CPU « Rome » architecture

- Diskless, using a PXE from CentOS and an initrd image
- Isolating specific cores from the operating system scheduler and confines the kernel
- Using non-blocking communications and shared memory areas to exchange intermediate results.
- Processing the data in parallel to their reception as much as possible
- Using IRQ affinity and taking advantage of the NUMA architecture proposed by the Epyc CPU

NUMA node 0: HO/LO/CIAO WPU centroider threads;

NUMA node 1: HO/LGS MVM;

NUMA node 2: CIAO sFPDP receiver and CIAO WPU calibrator thread; NUMA node 3: AWF projection;

NUMA node 4: OS, SPARTA drivers, telemetry;

NUMA node 5: HO/LO GigE RECV and HO/LO WPU (calibrator threads);

NUMA node 6: ALPAO transmitters and DM/M2/Jitter combiners

NUMA node 7: HO/LO AVC and HO/LO/Jitter IIR.

06/11/2023

GPAO RTC Design Overview

06/11/2023

GPAO Lab Setups

• <u>GPAO1</u> : Gateway + HRTC @MPE Garching

• <u>GPAO2</u> : Full cluster @OCA Nice

• <u>GPAO3</u> : Gateway + HRTC @ESO Garching

• <u>GPAO4</u> : Full cluster @LESIA Paris

06/11/2023

GPAO Specific Interfaces

06/11/2023

OCAM Interface

06/11/2023

OCAM Interface

	Sca	Low : High : Auto ale :	Cuts	37 1011 Min/ly 6x	6.00 6.00 1ax	Cam Stat	tus :	Detach	set	12		S E Ion	AC OHLI FR GPAD_LG	
-			4	-								Configu	ration PAD 1	GS CI
		•	٠	٠	٠	N.	F							Op N
		<u>به</u>	٠	3e			٠							State
	(B)			٠				10				FION)	DEVICES	GRA
		а,	÷			-	٠	-				0	× +Y +X	×5
				126	٠		÷					0 Sci (mV)	de : 1	Q
		6	٠	٠		٠						0 0 Sca	-Y +A	X 3 Y 3
		-	÷	٠	-	÷	÷							
		2												

Frame size: Height = 121 and Width = 1056. This setup is mandatory at frame grabber level to correctly obtain the expected $240 \times 240 = 57600$ pixels

So we are reading in total 8 channels of 66 pixels wide (60 + 6 prescan columns) by 121 pixels high (120 + 1 prescan line)

GVSP principles :

Each packet starts with a GVSP packet leader of 20 bytes. Each frame starts with a GVSP header of 36 bytes. Each frame finishes with a GVSP leader of 8 bytes.

Header = 20 + 36 = 56 bytes Payload = $16 \times (20 + 7986) = 128096$ bytes So a useful payload of $16 \times 7986 = 127776$ = 1056×121 bytes as expected Leader = 20 + 8 = 28 bytes

06/11/2023

ALPAO DM Interface

ALPAO UDP-Based Protocol

DM caracteristics :

- Number of actuators : 1432
- Number of channels : 1536
- Number of channels per electronics : 768

Неа	der	Payload	Trailer		
Start of frame	Start channel	Command to the DM XXXX XXXX XXXX	End of frame + Checksum	Padding	

06/11/2023

ALPAO DM Interface

06/11/2023

- Based on ESO MUDPI protocol
- To be tested @VCM ESO Garching
- Translation stage needed for UT4 : prototype was implemented by ESO, LCU using VxWorks MUDPI lib can translate MUDPI packets @2kHz into sFPDP

M2 Interface

- Based on Rapid Guiding LAN (1GbE)
- Sending alpha/delta corrections to M2 LCU at slower rate
- Booking Mechanism to be implemented
- Switches and Media converters upgrade needed
- To be tested @VCM ESO Garching

GPAO RTC Test Setup

<u>Oscilloscope + Adapter Card from PCIe to DB25 parallel (Startech PEX1P2)</u> Oscilloscope is plugged at OCAM level and parallel board on HRTC. Two measurements are made :

- First one is measuring time for the pixels to arrive to HRTC
- Second is measuring the previous one plus the full HRTC processing time

06/11/2023

1st Performance Results

NGS Mode, Closed loop, 0 gain, without disturbance and no CM update

The last

06/11/2023

1st Performance Results

06/11/2023

1st Performance Results

min_MVM_Full = 445.8676 us
max_MVM_Full = 474.1320 us
mean_MVM_Full = 458.8189 us
std_MVM_Full = 4.1732 us

nin_HOIIR_online = 18.4355 us	min_HOIIR_offline = 29.3364 us
nax_HOIIR_online = 28.5850 us	max_HOIIR_offline = 45.3573 us
nean_HOIIR_online = 20.9767 us	mean_HOIIR_offline = 35.5698 us
td_HOIIR_online = 0.8313 us	std_HOIIR_offline = 1.7321 us

06/11/2023

1st Performance Results : CM Update Optimization

06/11/2023

GPAO RTC Test Setup Update

<u>Hardware timestamping using NVIDIA Mellanox ConnectX®-6 Dx, 100GbE Dual-Port</u> These boards will be plugged on the HRTC to measure the time between pixel reception and the output of HRTC, including the commands to the actuators, DM but also Jitter and M2.

It will be also useful to check the elapsed time between two DM commands for example.

06/11/2023

Conclusion

06/11/2023

