Modeling Exoplanetary Atmospheres

Jonathan J. Fortney University of California, Santa Cruz Director, Other Worlds Laboratory

Methods for Characterizing the Atmospheres of Transiting Planets

Secondary Eclipse See thermal radiation and reflected light from planet disappear and reappear

Amplitude: ~0.1% Time Scale: 1-5 hours

Orbital Phase Variations

See cyclical variations in

Direct Imaging

Infrared Brightness Maps in Thermal Emission

• Jupiter, 1972 Key et al., 5 µm

• HD 189733b, 2007 Knutson et al., 8 µm

Planets Can Be Categorized

- atmospheres came from
 - "**Primary**": Accreted from the protoplanetary disk
 - Jupiter, Saturn, Uranus, Neptune, similar exoplanets
 - Atmosphere can be most of planet's total mass
 - "Secondary": Outgassed from the planet's interior
 - Venus, Earth, Mars, Titan, similar exoplanets

• Planets can generally be grouped (we think) based on where their

Two Aspects of Studying Atmospheres

Understand Atmospheric Physics (and Chemistry)

- Absorption and Emission of Radiation
- Circulation: Advection of Energy

Connect to Planetary Origins

- Atomic and Molecular Abundances
- Connect to Formation Location and/or Stellar Abundances

Connection to the Connecting Solar System to Origins for (Atreya et al. 2020) **Giant Planets**

Oberg et al. (2011)

Flavors of Models

- 1D Radiative/ Convective Equilibrium (RCE)
- Most akin to classical "stellar atmosphere modeling"
- Specify all the physics and chemistry and iterate to the "solution"
- Compute large grids over T_{eff} (or T_{eq}), gravity, abundances, cloud parameters

- Bayesian datadriven framework to yield constraints on temperature structure + abundances
- "Millions of models"
- Builds on Earth science methods but was rediscovered by astrophysicists (sigh)

1D Inverse Models ("Retrieval")

- 3D Dynamical **Models**
- Radiation + Hydrodynamics
- "GCM": General (or Global) Circulation Model
- Essential, since irradiated and/or cloudy atmospheres are inherently 3D
- Rad-tran and chemistry simplified vs. 1D RCE

Making a 1D RCE Model

Abundances

Chemistry

Opacities

Incident stellar energy

Intrinsic energy

Radiation/Convection

Atmospheric pressure-Temperature profile

Spectrum

1D RCE Model Allow for Predictions and Explorations of Parameter Space

from Marley & Robinson (2015)

Fitting a Spectrum Via Retrieval

Typical Hot Jupiter Retrieval Outcome

hot Jupiter HD 209458b Line et al. (2016)

Emergent Flux Density

3D GCM Models

• This is a tricky business

• Unlike the solar system, you can't "see" the dynamics

• Dynamics be inferred from time-series photometry or spectroscopy

Showman, Fortney, et al. (2009)

Diverse Atmospheres Across Day to Night

Parmentier et al. (2016)

Looking ahead: Reflection spectra of Exo-earths

Current Challenges for Models

- Umm...well...sometimes it isn't clear what observations to trust
- Clouds
 - Condensation, coagulation, sedimentation, transport, vaporization, in 1D or 3D
 - Not a solved problem for the Earth
- Incomplete molecular opacities at high temperatures and high resolution
 - Important role for lab astro
- Phase space for small planets is phenomenally larger in terms of possible chemical abundances

- We've spent considerable time and effort on assessing the known unknowns
- What about the unknown unknowns?

We've spent several decades mastering stellar atmospheres. Many more decades will be needed for exoplanet atmospheres

