4DWARFS: 4MOST survey of dwarf galaxies and their stellar streams

Ása Skúladóttir (PI) University of Florence / INAF Zinc ᆽ Promethium Copper Neodymium S Wnipueos Silver Nickel Nitrogen Cerium Ti Oxygen Cobal

4DWARFS

ESO Public Spectroscopic Survey

Phase 1 Lol

4MOST survey of dwarf galaxies and their stellar streams (4DWARFS): Small but fundamental

PI: Ása Skúladóttir [1,2] e-mail: asa.skuladottir@unifi.it

Cols: Anish M. Amarsi [3], Almudena Arcones [4,5], Giuseppina Battaglia [6,7], Sven Buder [8], Benoit Côté [9], Simon W. Campbell [10], Marius Eichler [4], Diane Feuillet [11], Andrew J. Gallagher [12], Viola Gelli [1,2], Melanie Hampel [10], Michael Hanke [13], Camilla J. Hansen [12], Sten Hasselquist [14,15], Vanessa Hill [16], Rodrigo Ibata [17], Nikolay Kacharov [12], Amanda Karakas [10], Andreas Koch [13], Karin Lind [18], Maria Lugaro [9], Davide Massari [19,20,21], Thomas Nordlander [8,22], Moritz Reichert [4], Martina Rossi [1,2], Ashley Ruiter [23], Stefania Salvadori [1,2], Ivo Seitenzahl [23], Eline Tolstoy [21], Theodora Xilaki-Dornbusch [24].

Survey planning and execution: Davide Massari (dPI), Eline Tolstoy (dPI) 3D/NLTE spectroscopy: Anish M. Amarsi (dPI) Stellar ages & chemical clocks: Diane Feuillet (dPI) Chemodynamics: Giuseppina Battaglia (dPI) Stellar streams: Rodrigo Ibata (dPI) First stars: Stefania Salvadori (dPI) Supernovae type Ia: Ashley Ruiter (dPI), Ivo Seitenzahl (dPI) Heavy elements: Camilla J. Hansen (dPI)

Motivation: The Science

(I) ORIGIN

- Dwarf galaxies are intrinsically metalpoor.
- Ideal laboratories to study yields of the first zero-metallicity stars
- Detailed comparison between surveys will reveal how much dwarf galaxies of different sizes have contributed to the metal-poor halo, [Fe/H]<-2

(I) ORIGIN

 4DWARFS will quantify the fraction of stars that were born from material produced by zero-metallicity, massive (>150 M_☉), pair instability supernovae (PISN).

(I) ORIGIN

• 4DWARFS will quantify the fraction of stars that were born from material produced by zero-metallicity, massive (>150 M☉), pair instability supernovae (PISN).

(II) EVOLUTION

- The effects of delayed nucleosynthetic channels are especially prominent in dwarf galaxies
- 4DWARFS will constrain the fundamental physics of nucleosynthesis, i.e. measure yields, metallicity dependence and timedelay distributions.
- Especially important for the r-process, where Sagittarius and Fornax show a unique enhancement
- Highly complimentary to the Consortium Galactic HR surveys & S10 TiDES

(II) EVOLUTION

Sagittarius Fornax [Fe/Mg] The effects of delayed nucleosynthetic Sculptor channels are especially prominent in dwarf 0 galaxies (I) EVOLUTION: Nucleosynthetic channels High S/N spectra with HRS and LRS Dwarf galaxies with different star formation histories [Eu/Mg] unique enhancement 0 Highly complimentary to the Consortium lacksquarer-process Galactic HR surveys & S10 TiDES

-1

-2

- 1

[Fe/H]

0

(III) GLOBAL PICTURE

Dwarf galaxies are key for the study of the hierarchical galaxy formation

- 4DWARFS will quantify the number of mergers happening in dwarf galaxies of various sizes
- 4DWARFS will be vital to quantify how much dwarf galaxies (and of which sizes) have contributed to the build-up of the Milky Way
- High-precision radial velocities, chemical abundances and age estimates will allow us to fully characterise the disruption of Sagittarius and its influence on the Milky Way.
- Reveal the structure of dark-matter in these dark-matter-dominated systems
- Highly complementary to all other Galactic 4MOST surveys

(III) GLOBAL PICTURE

Dwarf galaxies are key for the study of the hierarchical galaxy formation

 Highly complementary to all other Galactic 4MOST surveys

The 4DWARFS survey

4DWARFS

Target Selection

- Without 4DWARFS, 4MOST will have a very limited and biased view of Sagittarius and the Sagittarius stream
- Other dwarf galaxies too faint for the consortium HR halo survey.

4DWARFS

- Chemical abundances in all dwarf galaxies in the Southern hemisphere using both LRS and HRS
- ~120,000 stars with detailed chemical abundance measurements (>15 elements) in dwarf galaxies + the Sagittarius stream

Magnitude distribution

Region	Targets	Total [h]
Sagittarius	100000	353000
Sgr stream	20000	47000
Fornax	5000	67000
Sculptor	3000	37300
Small dwarfs	2000	7700
Total	130000	512000

- LRS: ~2/3 of fibre hours
- HRS:~1/3 of fibre hours

4MOST needed!

- WEAVE cannot do a comparable survey
 - Sagittarius, Fornax and Sculptor are not accessible
 - The majority of the Sagittarius stream is in the South
- Other facilities
 - Typically more than an order of magnitude more telescope time for only ~1/4 of 4DWARFS
- MOONS:
 - Field of view 500 cannot cover full spatial extent arcmin²
 - NIR/IR: >650nm most of the diagnostics of heavy elements + the low metallicity tail is at <500nm
 - Different abundance scale relative to 4MOST!

No other available or planned facility that can observe these dwarf galaxies as efficiently as 4MOST

4MOST is a unique facility for 4DWARFS

Conclusions

• 4DWARFS is a proposed 4MOST community survey

- All dwarf galaxies in the Southern Hemisphere
- The Sagittarius stream + the Omega Cen stream
- Targets: 130,000 stars
- Total observational time: 512k fibre hours (~1/3 HRS and ~2/3 LRS)

• Science goals:

- (I) ORIGIN: First stars
- (II) EVOLUTION: Nucleosynthetic channels (SNIa, AGB stars, NSM)
- (III) GLOBAL PICTURE: Hierarchical galaxy formation
- Other: IMF variations, globular clusters, lithium-rich giants etc.
- Will provide radial velocities, chemical abundances and ages for all the target stars
- 4DWARFS will increase the number of stars in dwarf galaxies and streams with detailed abundance information (>15 elements) by several orders of magnitude, ensuring the far-reaching impact of this survey.
- Highly complementary to existing Galactic surveys, as well as S10 TiDES

4DWARFS can only be done with 4MOST!

Survey metrics

Table 1: Survey metrics. Target density includes intended/available targets. When the area is smaller than one 4MOST pointing, the target density is assumed over one field-of-view (4.2 deg^2) .

Regions	$\mathbf{R}\mathbf{A}$	Dec	Area	LR/HR	Density	t_{exp}	$\langle t_{\exp} \rangle$	mag	$\langle mag \rangle$	Priority
	[deg]	[deg]	$[\mathrm{deg}^2]$		$[target/deg^2]$	[h]	[h]	[G]	[G]	
Sagittarius	275 to 295	-34.5 to -26.5	140	HRS	164/180	2-4	1.9	14 - 16.5	15.7	1
Sagittarius	275 to 295	-34.5 to -26.5	140	LRS	550/640	1-4	1.5	16.5 - 18	17.5	1
Sgr stream	0 to 360	-50 to $+5$	>5000	\mathbf{HRS}	$<\!20/40$	0.33-4	1.9	13 - 17.2	15.7	1
Sgr stream	0 to 360	-50 to $+5$	$>\!5000$	LRS	$<\!40/80$	0.67-2	1.5	16.1 17.2	16.7	1
Fornax	40.0	-34.4	4.2	HRS	250/360	12 - 24	16	17.4 - 18.5	18.1	1
Fornax	40.0	-34.4	4.2	LRS	940/1200	2.5 - 14	8.9	18.3 - 19.6	19.4	1
Sculptor	15.0	-33.7	4.2	HRS	143/155	14	14	16.4 - 18.3	17.6	1
Sculptor	15.0	-33.7	4.2	LRS	570/770	2.5 - 14	8.8	18.0-20.2	19.4	1
Carina	100.4	-51.0	4.2	LRS	238/265	4	4	16.5 - 20.4	19.4	2
Sextans	153.3	-1.6	4.2	LRS	95/106	2	2	16.5 - 20	18.7	2
UFD	-	-	-	LRS	≤ 10	2	2	16.5 - 20	19.5	3
ω Cen stream	$185\ {\rm to}\ 225$	-40 to -20	200	HRS	0.25/0.5	2	2	11 - 16.5	15.4	3
ω Cen stream	$185\ {\rm to}\ 225$	-40 to -20	200	LRS	0.75/1.0	2	2	16.5 - 17.5	17.0	3

Targets

Table 2: Total number of targets in each galaxy, with estimated fibre hours. 'Small dwarfs' includes Carina, Sextans, UFD and the ω Centauri stream.

Region	Targets	HRS [h]	LRS [h]	t_{exp} [h]	Overh. [h]	Total [h]
Sagittarius	100000	86 000	189000	275000	78000	353000
Sgr stream	20000	13000	20000	33000	14000	47000
Fornax	5000	16800	35200	52000	15000	67000
Sculptor	3000	8400	20600	29000	8300	37300
Small dwarfs	2000	100	5900	6000	1700	$7\ 700$
Total	130000	124300	270700	395000	117000	512000

Exposure time estimates

Region	Sub-survey	$\rm S/N~[pix^{-1}]$	λ_{ref}	mag [G]	Targets	t_{\exp} [h]
Sagittarius	HRS: bright	>40	420	≤ 15.5	8 000	32000
Sagittarius	HRS: faint	$>\!25$	420	≤ 16.5	15000	54000
Sagittarius	LRS	>40	520	≤ 18.0	77000	189000
Sgr stream	HRS: WAVES	>30	520	≤ 17.2	2000	6000
Sgr stream	HRS: all sky	>40	520	≤ 16.1	5000	7000
Sgr stream	LRS: all sky	>40	520	≤ 17.2	13000	20000
Fornax	HRS	>30	520	≤ 18.5	1050	16800
Fornax	LRS: bright	> 30	520	≤ 19.4	2500	29000
Fornax	LRS: faint	> 20	620	≤ 19.5	1450	6200
Sculptor	HRS	>30	520	≤ 18.3	600	8400
$\operatorname{Sculptor}$	LRS: bright	> 30	520	≤ 19.3	900	12600
$\operatorname{Sculptor}$	LRS: faint	> 20	620	≤ 20.2	1500	8000
Carina	LRS: bright	>30	520	≤ 18.4	150	600
Carina	LRS: faint	> 10	620	≤ 20.4	850	3400
Sextans	LRS	> 10	620	≤ 20.0	400	800
UFD	LRS	> 10	620	≤ 20.0	400	800
$\omega {\rm Cen \ stream}$	HRS	> 30	520	≤ 16.5	50	100
$\omega {\rm Cen}$ stream	LRS	>30	520	≤ 17.5	150	300

Table 3: Exposure time estimates, t_{exp} , for the different sub-surveys of 4DWARFS.