4MOST – 4m Multi-Object Spectroscopic Telescope

4GP: 4MOST galactic pipeline Ross Church (Lund Observatory) On behalf of IWG7

Overview

- What the Galactic pipeline does
- How the Galactic pipeline works
- Who we are
- Pipeline status summary

Reminder of abbreviations

- **4GP**: 4MOST Galactic Pipeline
 - The software and data used to analyse spectra of stellar targets
- **IWG7**: Galactic Pipeline Infrastructure Working Group
 - The group of people working together to build 4GP
- Level 2: data product derived from the reduced spectrum

What the galactic pipeline does

- a radial velocity
- stellar parameters (T_{eff}, log g, [Fe/H], ξ , V_{rot}, age)
- abundances of selected elements
- a normalised spectrum
- Inputs to the pipeline are
 - the reduced spectra
 - astrometric, photometric and asteroseismic data

From the IWG7 management plan

Pipeline philosophy

- Collaboration between Galactic survey members
 Avoid duplicated effort (similar targets and requirements)
- Use best techniques to analyse each spectrum
 - Possible to provide multiple results (e.g. with/without Gaia priors)
- Combine codes into a single automatic pipeline
 - Provides infrastructure to manage "firehose" of data
 - Enables quality control and rapid turnaround
 - Does not preclude manual re-analysis of subsamples

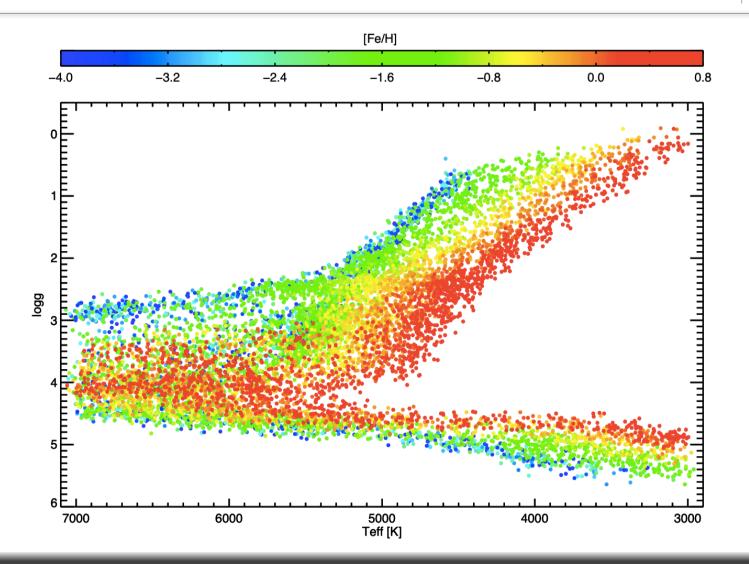
Targets

Consortium Survey	Brightness range (magnitudes)	Targets (millions)
S1 Milky Way Halo LR	$15.0 \leq G \leq 20.0$	1.5
S2 Milky Way Halo HR	$12.0 \leq G \leq 17.0$	1.5
S3 Milky Way Disc and Bulge LR (4MIDABLE-LR)	$14.0 \leq G \leq 19.0$	10.0
S4 Milky Way Disc and Bulge HR (4MIDABLE-HR)	$10.0 \leq G \leq 15.5$	2.5
S5 Galaxy Clusters	$18.0 \leq r \leq 22.0$	1.7
S6 AGN	$18.0 \leq r \leq 22.8$	1.0
S7 Galaxy Evolution (WAVES)	$18.0 \leq r \leq 22.5$	1.6
S8 Cosmology Redshift Survey	$20.0 \leq r \leq 23.9$	8.0
S9 Magellanic Clouds (1001MC)	$10.5 \leq G \leq 19.5$	0.5
S10 Transients (TiDES)	$18.0 \leq r \leq 22.5$	0.3
Total		> 28

Table 2. The minimal number and typical magnitude range of targets that each Consortium Survey expects to observe in the first five-year survey of 4MOST.

12 million LR and 4 million HR targets Mostly FGK dwarfs and giants

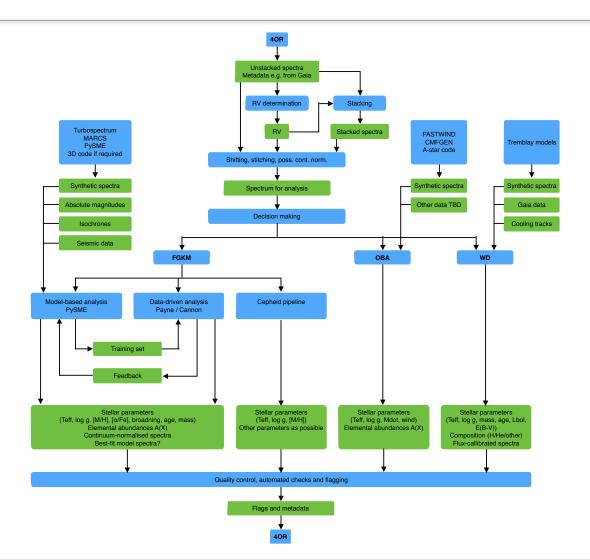
FGK star performance requirements


Survey	SNR / Å	RV [km/s]	[Fe/H] (dex)	[X/Fe] (N,dex)
S1 (LR halo)	10-25	1-2	0.2 dex	alpha, <0.1 dex (@SNR/Å=25)
S2 (HR halo)	40-140	2	~0.1 dex	<20, 0.2-0.3 dex
S3 (LR disk/ bulge)	10-50	1-2	~0.1 dex	~10, 0.1-0.2 dex
S4 (HR disk/ bulge)	100	1	0.05 dex	~20, 0.05 dex
S9 (Magellanic clouds)	20-100	2	0.2 dex	Few, 0.2 dex

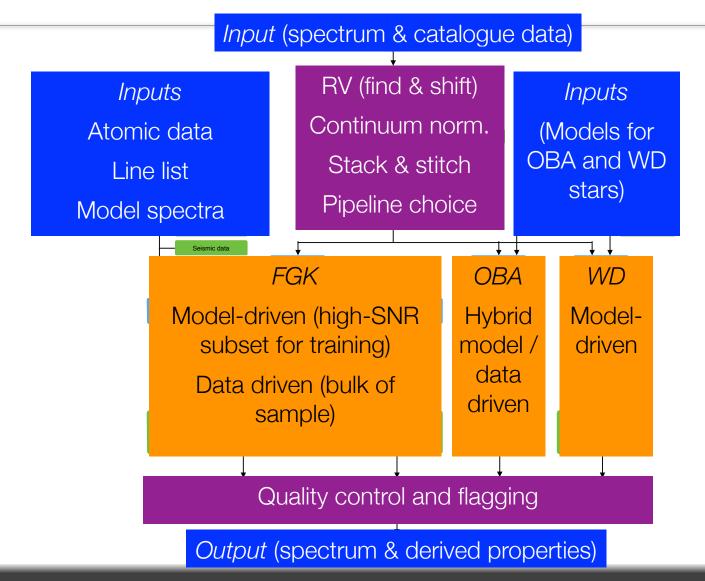
From ESO Messenger Vol. 175

4GP: 4MOST galactic pipeline | ESO 4MOST Community Workshop 2020 | Ross Church on behalf of IWG7

FGK star targets


Other stellar types

- WDs from S3 (LR Disk & bulge)
 - RVs (few km/s), atmospheric parameters, chemistry
- OBA stars from S9 (Magellanic clouds)
 - RVs (1-2 km/s), stellar parameters, chemistry
- Cepheids
 - Epoch RVs plus stellar parameters
- Additional modules can be added, given provided effort

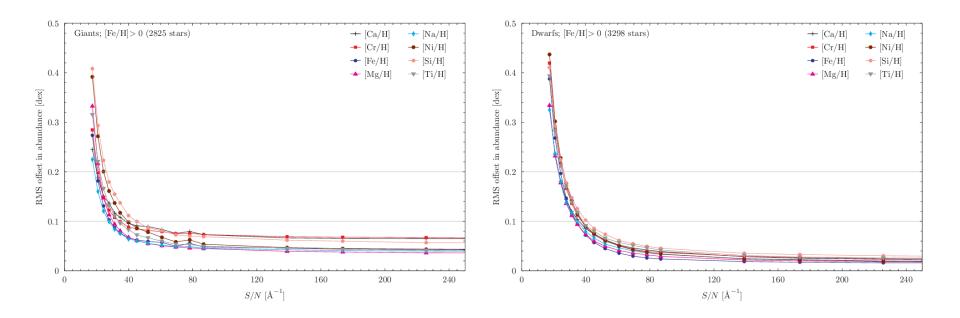

How will it work

How will it work (simplified)

How will it work (common core)

- Continuum normalisation: fit to envelope of continuum
- Radial velocity: cross-correlation with template spectra
- Stack and stitch: code provided by L1 pipeline / 4XP
- Decision making: From photometry & astrometry / ML (tbd)
- QC: Checks that parameters are in range, flags from subpipelines, etc.

How it will work (FGK stars)



- High SNR subset of stars analysed using PySME (Valenti & Piskunov 1996; Piskunov & Valenti 2017)
 - Analysis will include custom line list, NLTE corrections, <3D> if necessary
 - Verified against benchmark stars with well-known parameters to test accuracy
- Bulk of stars to be analysed using rapid machine learning technique
 - Implemented Cannon (Ness et al. 2015) and Payne (Ting et al. 2018) but final pipeline choice still open

How (well) it will work (FGK stars)

 Tests with the Payne (Ting et al. 2018) on synthetic spectra (LRS, metal-rich stars)

Training and verification data

- Need:
 - Spectra of ~10⁴ stars observed early at high SNR in LRS & HRS to provide training data
 - Spectra of bright benchmarks / clusters / asteroseismic fields for verification
 - IWG7 "mini-survey" in planning

Other sub-pipelines

- WDs
 - Classification, grid-search, fit with interpolation
 - Developers: Pier-Emmanual Tremblay, Nicola Gentile Fusillo
- Hot stars (OBA)
 - Grid search with synthetic models
 - Automatically learns difference from synthetic spectra
 - Developer: Joachim Bestenlehner

Pipeline design

- Modular design
 - Some modules shared (RV, continuum, QC, etc.)
 - Some modules form sub-pipelines (e.g. Cannon code)
 - Easy to slot in an additional code for testing / production
- Framework splits input FITS files into spectra, defines pipeline tasks, marshals results, etc.
 - Manager / worker architecture allows use of multiple computers using Kubernetes

Who we are (IWG7)

- Working group leads:
 - Karin Lind (Stockholm)
 - Georges Kordopatis (Nice)
 - Ross Church (Lund)

- Members drawn from the galactic surveys
 - Complete list on www.4most.eu

Pipeline status

- Operational but not final:
 - Overall framework
 - Major sub-pipelines (FGK/WD/OBA)
 - RV / continuum / stitching
- Still to come
 - Sub-pipeline choice
 - Stacking across multiple OBs
 - QC pipeline
 - Testing on more realistic spectra (coming this autumn!)

