Developing an instrument simulator for HARMONI

E-ELT Data Simulation Workshop

Munich, 14th April 2016

A. Jarno, A. Pécontal, L. Piqueras

E-ELT/HARMONI

- First light Integral Field Spectrograph
- Large spectral band 0.47 2.45 µm
- FoV 152 x 214 = 32 528 spaxels
- 4 FoV scales:
 - 6.42"x9.12", 3.04"x4.28", 1.52'x2.14", 0.61"x0.86"
- 4 spectral resolutions:
 - R=400, R=3500, R=8000, R=20000

HARMONI Science Software

- CRAL is responsible for the HARMONI Science Software
 - Data Reduction System (Pipeline)
 - Instrument Numerical Model

Arlette Pécontal

Laure Piqueras

Aurélien Jarno

Why an instrument simulator for HARMONI?

- Used to develop the data reduction pipeline
- Also a tool to understand the instrument
 - Inputs for performance-related trade-offs
 - Early verification of the instruments performances
 - Preparation of test and calibration campaigns
 - Validation or pre-validation of specifications before the onsky commissioning
 - Providing synthetic detector readouts for
 - the development of various software (AIV, data analysis)
 - the science preparation

The instrument simulators developed at CRAL

JWST/NIRSpec

- Space based instrument
- Imager / Long slit spectroscopy / MOS / IFS
- NIR range: 0.6-5μm
- Industrial context (ESA, EADS Astrium)

• VLT/MUSE

- Ground based instrument
- IFS
- Visible range : 465-930 nm
- Developed internally in the consortium

Example of MUSE (1)

• Single star

Example of MUSE (2)

Example of MUSE (3)

- Calibration exposures
- FITS headers

					un numere Ann ann ann ann ann ann ann ann ann ann			
			nun un					
nang nang								
nannan an								
6755	12047	17391	22683	28027	33320	38612	43956	49248

👻 🖶 🥂 PreDryRun002_002_001_002+5KY.fits	
Fichier Édition Police	
HIEKAKCH ESU INS PAM2 SWSIM = 'I '/ IT I, TUNCTION IS SOT	tware simulation
HIERARCH ESO INS PAM2 VALID = 'F' / Measure validity	
HIERARCH ESO DET DID = ESO-VET-DIC.NOCDCS,ESO-VET-DIC.NOCCON,ESO HIERARCH ESO DET CHIPS = 24 / Number of chips in the mosaic	U-VET-D / NOCDC
HIERARCH ESO DET EXP NO = 42 / Unique exposure ID number	
HIERARCH ESO DET EXP TYPE = 'Normal ' / Exposure type	
HIERARCH ESO DET FRAM TYPE = 'Normal ' / Frame type	
HIERARCH ESO DET ID = 'NGC-MUSE' / Detector system Id	
HIERARCH ESO DET NAME = NGC-MOSE-DCS / Name of detector system	sin
HIERARCH ESO DET SHUT ID = 'eso-01 ' / Shutter unique identifie	r
HIERARCH ESO DET SHUT TMCLOS = 0. / Time taken to close shutter	
HIERARCH ESO DET SHUT TMOPEN = 0. / Time taken to open shutter	
HIERARCH ESO DET SHUT TYPE = 'nostatus' / Shutter type	
HIERARCH ESO DET SUPW MUDE = 'NORMAL ' / CCD sw operational mod	le
HIERARCH ESO DET EXP XEERTIM = 0.7 image transfer time	
HIERARCH ESO DET READ CURID = 1 / Used readout mode id	
HIERARCH ESO DET READ CURNAME = '1: SCI1.0' / Used readout mode	name
HIERARCH ESO TEL ALT = 64.7020664379886 / Tel ALT angle at start	(deg)
HIERARCH ESO TEL AMBI TEMP = 2.3000000000001 / Observatory ambi	ent temperature —
HIERARCH ESO TEL AMBI RHUM = 19. / Observatory ambient relative	r pressure at st
HIERARCH ESO TEL AMBI PRES END = 731. / Observatory ambient air	pressure at stop
HIERARCH ESO TEL AMBI FWHM START = 0.86 / Observatory seeing at	start
HIERARCH ESO TEL AMBI FWHM STOP = 0.86 / Observatory seeing at s	top
HIERARCH ESO TEL AIRM START = 1.1060748301433 / Airmass at start	
HIERARCH ESO TEL AIRM END = 1.02259153912385 / Airmass at stop	
HIERARCH ESO TEL AZ = 103.222039188399 / Tel AZIMUTH at Start (C	eg)
HIERARCH ESO TEL GEOLELY = 2053:457 Elevation above sea tever ((deg)
HIERARCH ESO TEL GEOLON = 70.4034 / Tel geographic lon (+=East)	(deq)
HIERARCH ESO TEL PARANG START = -89.3574814202036 / Parallactic	angle at start
HIERARCH ESO TEL PARANG END = -77.9554003921504 / Parallactic ar	igle at stop
HIERARCH ESO INS ADC MODE = 'OFF	
HIERARCH ESO INS DROT REGIN = 27.3277074911075 / Physical positi	on at start (deg
HIERARCH ESO INS MODE = 'WFM-NOAO-N'	an at start (acg
HIERARCH ESO INS MSU NAME = 'WFM '	
HIERARCH ESO INS LAMP1 SWSIM = F / If T, function is software si	mulat
HIERARCH ESO INS LAMPI ID = 'CL1 ' / Lamp ID.	
HIERARCH ESO INS LAMPI NAME = 'CU-LAMP-CONL' / Lamp Name.	
HIERARCH ESO INS LAMP2 SWSTM = F / If T. function is software si	mulat
HIERARCH ESO INS LAMP2 ID = 'CL2 ' / Lamp ID.	
HIERARCH ESO INS LAMP2 NAME = 'CU-LAMP-Cont' / Lamp Name.	
HIERARCH ESO INS LAMP2 ST = F / Lamp activated.	
HIERARCH ESO INS LAMP3 SWSIM = F / If I, function is software si	mulat
HIERARCH ESO INS LAMPS ID = CLS / Lamp ID.	
HIERARCH ESO INS LAMP3 ST = F / Lamp activated.	
HIERARCH ESO INS LAMP4 SWSIM = F / If T, function is software si	mulat
HIERARCH ESO INS LAMP4 ID = 'CL4 ' / Lamp ID.	
HIERARCH ESU INS LAMP4 NAME = 'CU-LAMP-Xe' / Lamp Name.	
HIERARCH ESO INS LAMP4 SI = F / Lamp activated.	mulat
HIERARCH ESO INS LAMPS IN $= 10.7$ I III, function is software si	and co c
HIERARCH ESO INS LAMP5 NAME = 'CU-LAMP-HqCd' / Lamp Name.	
HIERARCH ESO INS LAMP5 ST = F / Lamp activated.	
HIERARCH ESO INS LAMP6 SWSIM = F / If T, function is software si	mulat

Example of MUSE (4)

Typical simulated scenes

Star field

Deep field

Principle of the simulator

- From incident photons to electrons
 - Fourier optics propagation and PSF convolution
 - Taking into account optical aberrations, wavefront errors, diffraction effects
 - Taking into account realistic coordinate transforms
 - Modeling the dispersers

How many photons make it into electrons?

How is light

spread on the

detectors?

Where does it

go?

- Include information about the transmission/efficiency of the instrument
- Taking into account slit/diffraction losses
- Detector radiometric response
- From electrons to ADU
 - How electrons are counted?
- Detectors effects
 - Read-out process and effects

Fourier optics

- Instrument divided into optical modules
- Wave-front propagation between pupil and image planes using Fourier transforms (and vice versa)
- Aberrations introduced using an equivalent wavefront error mask extracted from Zemax
 - Variable within the FoV
 - Variable with the wavelength
- PSFs can be computed on the fly for each optical module at multiple positions and wavelengths

Coordinate transforms

- Design coordinate transforms maps produced by ZEMAX
- Possibility to use measured maps
- Maps are used to produce a parametric model of the coordinates transform (3D polynomial)
- Dispersers modeled analytically
- Dilution function computed as [det(J_P(x,y,λ))]

# Create a barrel	L coor	dinate	trans	forms map
<pre>px = np.array([[</pre>	0.0,	0.0,	0.0,	0.0],
]	1.0,	0.0, -	0.1,	0.0],
]	0.0,	0.0,	0.0,	0.0],
[·	0.1,	0.0,	0.0,	0.0]])
<pre>py = np.array([[</pre>	0.0,	1.0,	0.0,	-0.1],
]	0.0,	0.0,	0.0,	0.0],
]	0.0,	-0.1,	0.0,	0.0],
]	0.0,	0.0,	0.0,	0.0]])

Atmosphere simulation

- Seeing
 - Modeled as a PSF variable over FoV and wavelength
 - Simulations done by AO team (LAM)
 - Also includes other telescope effects (pointing, wind shake, etc.)
- Atmospheric refraction
 - Depends on temperature, humidity, pressure
 - Depends on the parallactic angle, which varies during the exposure. We apply the integrated effect
 - for visible detectors during the whole exposure
 - for IR detectors between two readouts
- Sky background and absorption lines
 - Modeled using ESO SKYCALC Sky Model Calcula

Detector modeling

- Reproduce the conversion from photons to electrons and to ADU
- Chromatic part
 - Sampling
 - Quantum efficiency
 - Inter and intra-pixel sensitivity
- Non chromatic part
 - Cosmetics (hot/dark pixels/columns/clusters, traps)
 - Dark current
 - Shot noise
 - Non linearity
 - Charge transfer efficiency
 - Read-out noise
 - Conversion into ADU
 - Cosmic rays

Exposure simulation with NIRSpec DM detector (zoom on pinholes and SCA491)

Zoom on pinholes in the electron rate map

Exposure simulator (1)

- Glue between the previous software components to produce synthetic exposures
- Input data for on sky exposures
 - Astrophysical scene: set of "objects" (small cube) with their location
 - Sky coordinates
 - Date and time of observation
 - Atmospheric conditions (seeing, temperature, humidity, pressure, etc.)
- Input data for calibration exposures
 - Calibration unit setup (lamps, masks, ...)
 - Date and time of observation

Exposure simulator (2)

Lessons learned: schedule and development methods

- Needs a lot of data/information from the project
- Living software which evolves as the instrument is being built
- Can help developing data reduction and data analysis software
- Can help doing strategic choices
- Therefore:
 - Flexible development methods
 - Most demanded feature: exposure simulator
 - Consider releasing exposures instead of software (at least during the development)

Lessons learned: track assumptions and limitations

- Usual initial goal: make the simulator as generic as possible
- Then comes the optimization time: adding assumptions and limitations
- It is essential to track the assumptions and limitations
 - In case of design changes (both simulator and instrument)
 - For future developers of the software
 - For the users (both of the software and simulated exposures)

Lessons learned: interfaces

- An instrument simulator manipulates a lot of data from various sources
 - Instrument model: optical design, wavefront maps, throughput, etc.
 - Astrophysical scenes: cubes, images, spectra, etc.
- Use an interface control document
 - Should evolve with the developments if needed
 - Should be discussed with the users
- Define a common vocabulary between all people
- Difficulties to get measured data from suppliers in a given format, sometimes even in a numerical format

Lessons learned: building instrument models

- Garbage in, garbage out principle: the main limitation comes from
 - the instrument knowledge
 - the availability and the quality of the characterization data
- Participation to the AIV phase proved to be useful
- Building instrument models requires
 - A good knowledge of the instrument
 - A good knowledge of the simulator
 - A good knowledge of the science that will be done
- Models should be created with the help of a scientist with strong instrumentation background

Lessons learned: programming language

- Instrument simulators are CPU and memory intensive
 - Fined-grain memory control
 - Multithreaded code
- Both MUSE and NIRSpec instrument simulators were fully developed in C++
- HARMONI instrument simulator will be developed
 - Mostly in Python
 - C/C++ for the computation intensive parts

Conclusion

- The HARMONI is project now in phase B
- The optical design is still changing a lot
- Currently in the early design phase of the instrument simulator
 - Mostly prototyping things
 - Testing new ideas