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 First light Integral Field Spectrograph
 Large spectral band 0.47 – 2.45 μm
 FoV 152 x 214 = 32 528 spaxels
 4 FoV scales:

 6.42’’x9.12’’, 3.04’’x4.28’’, 
1.52’x2.14’’, 0.61’’x0.86’’

 4 spectral resolutions:
 R=400, R=3500, R=8000, R=20000

E-ELT/HARMONI



HARMONI Science Software
 CRAL is responsible for the HARMONI 

Science Software
 Data Reduction System (Pipeline)
 Instrument Numerical Model

Aurélien JarnoLaure PiquerasArlette Pécontal



Why an instrument simulator 
for HARMONI?

 Used to develop the data reduction pipeline
 Also a tool to understand the instrument

 Inputs for performance-related trade-offs
 Early verification of the instruments performances
 Preparation of test and calibration campaigns
 Validation or pre-validation of specifications before the on-

sky commissioning
 Providing synthetic detector readouts for

 the development of various software (AIV, data analysis)
 the science preparation



The instrument simulators 
developed at CRAL

 JWST/NIRSpec
 Space based instrument 
 Imager / Long slit 

spectroscopy / MOS / IFS
 NIR range: 0.6-5µm
 Industrial context (ESA, 

EADS Astrium)

 VLT/MUSE
 Ground based instrument
 IFS
 Visible range : 465-930 nm
 Developed internally in the 

consortium



Example of MUSE (1)

 Single star



Example of MUSE (2)

 Lyman-alpha emitter



Example of MUSE (3)

 Calibration exposures
 FITS headers



Example of MUSE (4)

 Typical simulated scenes

Star field Deep field



Principle of the simulator

 From incident photons to electrons
 Fourier optics propagation and PSF convolution
 Taking into account optical aberrations, wavefront errors, 

diffraction effects

 Taking into account realistic coordinate transforms
 Modeling the dispersers

How is light 
spread on the 

detectors?

Where does it 
go?

How many 
photons make 

it into 
electrons?

 Include information about the transmission/efficiency of 
the instrument 

 Taking into account slit/diffraction losses 
 Detector radiometric response

 From electrons to ADU

How electrons 
are counted?

 Detectors effects
 Read-out process and effects



 Instrument divided into optical modules
 Wave-front propagation between pupil and 

image planes using Fourier transforms (and 
vice versa)

 Aberrations introduced using an equivalent 
wavefront error mask extracted from Zemax
 Variable within the FoV
 Variable with the wavelength

 PSFs can be computed on the fly for
each optical module at multiple
positions and wavelengths
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 Design coordinate transforms maps produced by ZEMAX
 Possibility to use measured maps
 Maps are used to produce a parametric model of the 

coordinates transform (3D polynomial)
 Dispersers modeled analytically

 Dilution function computed as |det(JP(x,y,λ))|

Coordinate transforms

# Create a barrel coordinate transforms map
px = np.array([[ 0.0,  0.0,  0.0,  0.0],
               [ 1.0,  0.0, 0.1,  0.0],
               [ 0.0,  0.0,  0.0,  0.0],
               [0.1,  0.0,  0.0,  0.0]])
py = np.array([[ 0.0,  1.0,  0.0, 0.1],
               [ 0.0,  0.0,  0.0,  0.0],
               [ 0.0, 0.1,  0.0,  0.0],
               [ 0.0,  0.0,  0.0,  0.0]])



Atmosphere simulation
 Seeing

 Modeled as a PSF variable over FoV and wavelength
 Simulations done by AO team (LAM)
 Also includes other telescope effects (pointing, wind 

shake, etc.)

 Atmospheric refraction
 Depends on temperature, humidity, pressure
 Depends on the parallactic angle, which varies during 

the exposure. We apply the integrated effect
 for visible detectors during the whole exposure
 for IR detectors between two readouts

 Sky background and absorption lines
 Modeled using ESO SKYCALC Sky Model Calculator



Detector modeling
 Reproduce the conversion from photons to electrons and to ADU 

 Chromatic part
 Sampling
 Quantum efficiency
 Inter and intra-pixel sensitivity

 Non chromatic part
 Cosmetics (hot/dark pixels/columns/clusters, traps)
 Dark current
 Shot noise
 Non linearity
 Charge transfer efficiency
 Read-out noise
 Conversion into ADU
 Cosmic rays

Zoom on pinholes in the electron rate map

Exposure simulation with NIRSpec 
DM detector (zoom on pinholes and 
SCA491) 



Exposure simulator (1)

 Glue between the previous software components to produce 
synthetic exposures

 Input data for on sky exposures
 Astrophysical scene: set of "objects" (small cube) with their 

location
 Sky coordinates
 Date and time of observation
 Atmospheric conditions (seeing, temperature, humidity, 

pressure, etc.)
 Input data for calibration exposures

 Calibration unit setup (lamps, masks, …)
 Date and time of observation



Exposure simulator (2)

Optical module
simulator

Image maskThroughput

Fourier
optics

Coordinate
transforms

Atmosphere
simulator

Detectors
simulator

(chromatic)

Loop on optical module

Loop on each input cube

Detectors
simulator

(achromatic)

Electron 
Rate Map

Input
objects

Sky 
background



Lessons learned: schedule 
and development methods

 A good phasing with the project is essential to make an 
instrument simulator useful
 Needs a lot of data/information from the project
 Living software which evolves as the instrument is being 

built
 Can help developing data reduction and data analysis 

software
 Can help doing strategic choices

➔ Therefore:
➔ Flexible development methods
➔ Most demanded feature: exposure simulator
➔ Consider releasing exposures instead of software (at least 

during the development)



Lessons learned: track 
assumptions and limitations

 Usual initial goal: make the simulator as generic as 
possible

 Then comes the optimization time: adding 
assumptions and limitations

 It is essential to track the assumptions and 
limitations
 In case of design changes (both simulator and 

instrument)
 For future developers of the software
 For the users (both of the software and simulated 

exposures)



Lessons learned: interfaces

 An instrument simulator manipulates a lot of data from 
various sources
 Instrument model: optical design, wavefront maps, 

throughput, etc.
 Astrophysical scenes: cubes, images, spectra, etc.

➔ Use an interface control document
 Should evolve with the developments if needed
 Should be discussed with the users

➔ Define a common vocabulary between all people
 Difficulties to get measured data from suppliers in a given 

format, sometimes even in a numerical format



Lessons learned: building 
instrument models

 Garbage in, garbage out principle: the main limitation 
comes from
 the instrument knowledge
 the availability and the quality of the characterization 

data
➔ Participation to the AIV phase proved to be useful
 Building instrument models requires

 A good knowledge of the instrument
 A good knowledge of the simulator
 A good knowledge of the science that will be done

➔ Models should be created with the help of a scientist 
with strong instrumentation background



Lessons learned: 
programming language

 Instrument simulators are CPU and memory intensive
➔ Fined-grain memory control
➔ Multithreaded code

 Both MUSE and NIRSpec instrument simulators were 
fully developed in C++

 HARMONI instrument simulator will be developed
 Mostly in Python
 C/C++ for the computation intensive parts



Conclusion

 The HARMONI is project now in phase B
 The optical design is still changing a lot
 Currently in the early design phase of the 

instrument simulator
 Mostly prototyping things
 Testing new ideas
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