Globular Cluster Streams as Galactic High-Precision Scales Andreas Küpper

Tidal streams help us understand the parts of the Galaxy which are dark

Bonaca, Geha & Kallivayalil (2012)

Where does the stream begin, where does the satellite end?

Küpper, Mieske & Kroupa (2011)

Palomar 5 is a low-mass, low-density clusters in the halo of the Milky Way high above the Galactic disk

In the last data release it can be traced for > 20 deg, which corresponds to more than 8 kpc

Palomar 5 is dissolving, not being torn apart

The stream shows substructure

The stream shows substructure

Substructure can be statistically quantified using a difference-of-Gaussian process

Substructure can be statistically quantified using a difference-of-Gaussian process

17 (+ 47) radial velocities have been measured along the tidal stream

More data is coming soon

Several modeling techniques have been developed in recent years

- Orbit fitting (Buist, Deg, Koposov)
- Actions, Angles & Frequencies (Bovy, Sanders)
- Rewinding orbits (Price-Whelan)
- Entropy minimization (Peñarrubia, Sanderson)
- Energy conservation (Hattori)
- Streakline/particle spray (Odenkirchen, Varghese, Bonaca, Amorisco, Fardal, Gibbons, …)

Stars escape through the Lagrange points with low offset velocities

Just, Berczik, Petrov & Ernst (2009)

Stars escape from the Jacobi radius - if they can

Streaklines can be used to predict shapes of streams

Streaklines can be easily inserted into simulations of structure formation

Via Lactea Cauda

- 1.1 billion DM particles
- 1280 cluster particles
- 120,000 stream particles each
- data publicly available soon

Küpper & Diemand (in prep.)

Can we approximate a live halo with a static, analytic parametrization?

Bonaca et al. (2014)

Can we approximate a live halo with a static, analytic parametrization?

Ana Bonaca (Yale)

10⁷ stream realizations for inference with MCMC using 10⁵ CPU hours on Columbia's Yeti cluster

Our streakline modeling has 10 free parameters

NFW halo scale mass

NFW halo scale radius

NFW halo flattening

Solar distance to Galactic center

Solar transverse velocity

distance Sun-Palomar 5

Palomar 5 proper motion RA

Palomar 5 proper motion Dec

present-day mass of Palomar 5

mean mass-loss rate of Palomar 5

If applied to an N-body simulation our method recovers all values with high accuracies

Best-fit streakline models recover overdensity pattern

Halo at 19 kpc is slightly oblate

Circular velocity in the disk at 19 kpc is 221 km/s

Solar parameter results are in agreement with other methods, e.g., masers, NSC, Sgr A*, bulge

We predict proper motions of Palomar 5

Take-home messages

- Globular cluster streams are high-precision scales
- MW dark halo potential is nearly spherical within 19 kpc
- Circular velocity" at 19 kpc is about 217 km/s
- Distance Sun-Galactic Center
 is 8.3 kpc

Bonus material

We get estimates & uncertainties on additional cluster parameters independent of other methods

Other methods use tracers in the Galactic halo

Palomar 5 measurement in excellent agreement with other most other methods

Circular velocity in the halo at 19 kpc is 217 km/s

Different orbits cause different epicyclic patterns

Epicyclic motions cause apparent overdensities and underdensities containing orbital information

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines also depends on whether the cluster mass is taken into account or not

