Satellites and Streams in SPLASH

Karoline Gilbert

Space Telescope Science Institute

Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

Photo credit: Dr. Andrew Davidhazy

Raja Guhathakurta (UCSC) Steve Majewski (U Virginia) Marla Geha (Yale) James Bullock (UC Irvine) Rachael Beaton (Carnegie) Erik Tollerud (Yale) Evan Kirby (Caltech) Jason Kalirai (STScI) Claire Dorman (UCSC) Katie Hamren (UCSC) Kirsten Howley (LLNL) Mark Fardal (U Mass) Ricky Patterson (U Virginia) Andreea Font (ARI Liverpool) Kathryn Johnston (Columbia U) Tom Brown (STScI)

SPLASH Observations

Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

SP

78 Fields in M, T2, DD051 9 Observing Seasons Pls: Majewski & Beaton

Keck+DEIMOS Medium Resolution Spectroscopy R ~ 6000

~170 Individual Masks ~20,000 individual M31 stellar spectra PI: Guhathakurta & Bullock

PANDAS Survey Map from Richardson et al. 2011

SPLASH Observations

Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

~170 Individual Masks ~20,000 individual M31 stellar spectra PI: Guhathakurta & Bullock

PANDAS Survey Map from Richardson et al. 2011

SPLASH Observations

Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

- Discovery and characterization of Andromeda's extended, metal-poor stellar halo: *Guhathakurta et al. 2005, Kalirai et al. 2006a, Courteau et al. 2011, Gilbert et al. 2012, Gilbert et al. 2014*
 - Characterization of Andromeda's inner stellar halo: *Dorman et al. 2012, Dorman et al. 2013*

- Discovery of the continuation of Andromeda's giant southern stream: *Gilbert et al. 2007, Fardal et al. 2008, Fardal et al. 2012*
 - Andromeda's Dwarf Satellites: *Majewski et al. 2007, Kalirai et al. 2007, Howley et al. 2008, Geha et al. 2010, Kalirai et al. 2010, Tollerud et al. 2012, Ho et al. 2012, Howley et al. 2013*
- Discovery and characterization of tidal debris features: *Guhathakurta et al.* 2006, Kalirai et al. 2006b, Gilbert et al. 2009a, Gilbert et al. 2009b, Gilbert et al. 2012, Gilbert et al. 2014

Three Major Phases of Minor Mergers (1) Intact Satellites ← Yet to be Accreted (2) Stellar Streams ← Accreting (3) "Smooth" Stellar Halo ← Accreted

Three Major Phases of Minor Mergers (1) Intact Satellites ← Yet to be Accreted (2) Stellar Streams ← Accreting (3) "Smooth" Stellar Halo ← Accreted

Internal Stellar Kinematics of M32

Integrated light (at small radii) + resolved stellar spectroscopy

Howley et al. 2013

Kinematics of M32

- Mean Velocity and dispersion measured to > 6 r_{eff}
- Rotation curve and dispersion profile extend well beyond where isophotes become distorted – kinematics appear regular and symmetric

Kinematics of M32

- Mean Velocity and dispersion measured to > 6 r_{eff}
- Rotation curve and dispersion profile extend well beyond where isophotes become distorted – kinematics appear regular and symmetric

Compilation of M31 Dwarf Satellites

Tollerud et al. 2012

15 M31 Dwarf Satellites

Tollerud et al. 2012

 $b = -10^{\circ}$

b = -15

b = -20

b = -25'

b = -30

b = -35

M31 vs. MW: Dwarf Satellites

Three Major Phases of Minor Mergers (1) Intact Satellites ← Yet to be Accreted (2) Stellar Streams ← Accreting (3) "Smooth" Stellar Halo ← Accreted

Tidal Debris in the Andromeda Galaxy

McConnachie et al. 2009

The Merger of a Dwarf Galaxy with Andromeda

Fardal et al. 2007, MNRAS

Ferguson et al. 2002, AJ

Comparison of Data to Simulations

Gilbert et al. 2007

See also Fardal et al. 2007

Detailed Dissection of Past Collision Events What Can This Exercise Teach Us?

Ratio of stars: density gradient along stream

```
log(M200) = 12.3 + - 0.1
```

Fardal et al. 2013

Detailed Dissection of Past Collision Events What Can This Exercise Teach Us?

Three Major Phases of Minor Mergers (1) Intact Satellites ← Yet to be Accreted (2) Stellar Streams ← Accreting (3) "Smooth" Stellar Halo ← Accreted

Global Properties of M31's Halo: Implications for M31's Merger History

Observed: Lack of break in density profile, Increased variation at large radii

Implication: Large number of recent low-mass accretions at large radii

Gilbert et al. 2012

Bullock & Johnston (2005) models

Global Properties of M31's Halo: Implications for M31's Merger History

Observed: Significant metallicity gradient to large radii, even after removal of GSS

Implication: M31 halo built largely from one to a few early, relatively massive (>10⁹ M_{sun}) accretion events Tissera 2014, Cooper 2010

Gilbert et al. 2012, 2014

Formation History of Andromeda's Stellar Halo

- Early, relatively massive accretion events
- Large numbers of recent lowmass accretions

- ~ LMC sized system
- Collided 760 Myr ago

Formation History of Andromeda's Stellar Halo

Profile Luminosity Function, Time of Accretion

Accretion History

of Accreted Satellites

- ~ LMC sized system
- Collided 760 Myr ago

- Early, relatively massive accretion events
- Large numbers of recent lowmass accretions

Deducing Properties of Destroyed Satellites

Surface Brightness of stellar streams is easily observed...

McConnachie et al. 2009

Deducing Properties of Destroyed Satellites

The mean metallicity of a stream is related to the luminosity of the accreted satellite.

Johnston et al. 2008 Bullock & Johnston (2005) models

Metallicity

Deducing Properties of Destroyed Satellites

First Measurements of [α/Fe] in M31's Stellar Halo

Vargas et al. 2014a: 226 stars in 9 M31 dwarf galaxies Vargas et al. 2014b: 4 M31 halo stars

Dwarf Galaxies accreted, accreting, yet to be accreted

[α/Fe]

μ

Luminosity Function of Accreted Satellites

Time of Accretion

Image Credit Sanjib Sharma

Conclusions

Andromeda's stellar halo shows clear evidence of being built through mergers with smaller galaxies. It preserves a fossil record of the stellar populations of these long-destroyed dwarf galaxies.

Splash Survey:

- Secure identification of M31 stars: sensitivity to extremely sparse halo, stream, and satellite populations
- Kinematics: the ability to identify faint tidal debris features and study their effect on measurements of global halo properties
- > SPLASH has studied the three Major Phases of Minor Mergers:
 - Intact Satellites (dEs (M32, NGC 147, 185, 205) and dSphs)
 - > Stellar Streams (giant southern stream, other halo streams)
 - Smooth" Stellar Halo

