

The LAMOST view of Galactic halo substructure

Jeff Carlin

Earlham College \& Rensselaer Polytechnic Institute

ESO Chile, Santiago, April 13, 2015

Outline

- LAMOST spectroscopic survey
- tools to exploit LAMOST data
- Satellites and streams with LAMOST
- Sagittarius stream
- level of substructure in the halo
- Satellites' effects on galaxy structure
- Wiggles in the Milky Way disk

LAMOST survey

- Located in N. China ($40^{\circ} \mathrm{N}$ lat.)
- 4 meter effective aperture
- 4000 fibers in focal plane of 5°
(1.75m) diameter
- 16 bench spectrographs
- Sky coverage: Dec > -10 ${ }^{\circ}$
- Wavelength range: 3700-9000 Å
- Resolution $(\lambda / \Delta \lambda)$: 1800
- Public Data Release 1: http://dr1.lamost.org/

LAMOST survey footprint

Distribution of 2192 LAMOST plates observed Oct. 2011 - Apr. 7, 2015
$\rightarrow \sim 4.5$ million spectra available
(~ 2.0 million unique stars with stellar parameters, most with $\mathrm{r}<17 \mathrm{mag}$)

Developing the tools for studying Galactic structure with LAMOST

- proper motion corrections
- distances (derived from stellar parameters)
- K-giant classification (SVM-based; for low S/N spectra)
- M-giant classification (template matching)

Correcting PPMXL proper motion zero points

σ-clipped mean

 proper motions of QSOs/galaxies in 3×3-deg. binsGrabowski, Carlin, Newberg, et al. 2015, RAA accepted (arXiv:1409.2890)

Distances to ~ 2 million stars using LAMOST stellar parameters:

- accurate to $\sim 20 \%$ (with systematic offset for distant, metalpoor giants).
- Paper has been resubmitted (Carlin et al. 2015, AJ)...

K-giant classification of LAMOST spectra (Liu, C., et al. 2014; ApJ 790, 110)

SVM-based classification, using primarily spectral indices (e.g., $\mathrm{Mg} \mathrm{b}, \mathrm{TiO}, \mathrm{H} \beta$)

- spectra with S / N as low as ~ 3
- ~290,000 K-giant candidates from DR1
- 80% completeness for $\mathrm{S} / \mathrm{N}>20$ (67\% for $\mathrm{S} / \mathrm{N}<20$)

Black: giants identified via LAMOST stellar parameters Red: K giants

Sagittarius K-giants

Large clump of stars at $70<\mathrm{R}_{\mathrm{Gc}}<85 \mathrm{kpc}$, $\mathrm{V}_{\mathrm{gsr}} \sim 0 \mathrm{~km} / \mathrm{s}$, and B~0 deg., between $180<\Lambda<200$ deg.

Liu, C., et al. 2014; ApJ 790, 110

M giants (spectroscopic selection)

Galactic substructure with LAMOST

- Sagittarius stream
- Substructure with halo kinematics
- Disk velocity structures

LAMOST Sagittarius candidates: $-1.8<[\mathrm{Fe} / \mathrm{H}]<-0.4$, $\log \mathrm{g}<3.25, \mathrm{~S} / \mathrm{N}>5,|\mathrm{~B}|<15$ deg., dist $>5 \mathrm{kpc}$

Sgr candidates split into 10-deg. ranges in Λ

Finding clumps/associations of halo stars - the 4distance

Idea: create a metric quantifying the separation of any two stars in (I, b, $\mathrm{V}_{\text {GSR }}$, and distance) phase space

Starkenburg et al. 2009, ApJ, 698, 567 Janesh et al. 2015, arXiv: 1503.09133

LAMOST halo groups (linked via friends-of-friends algorithm) among ~8700 giants; Carlin et al. 2015 (in prep)

"random" regions:

$150<R A<180$ deg. $45<$ Dec < 55 deg.

16 groups with >3 members
$170<R A<190$ deg. $0<\mathrm{Dec}<15$ deg.

25 groups with >3 members

Effects of satellites on the Galaxy: "wiggles" in the disk Carlin, DeLaunay, et al. 2013 (ApJL, 777, L5)

Kinematics of $\sim 400,000$ stars with LAMOST spectra, between $8<\mathrm{R}_{\mathrm{Gc}}<10 \mathrm{kpc}$ (Sun at 8 kpc), $|\mathrm{Z}|<2 \mathrm{kpc}$

Bin stars in 200×200 pc bins, average the velocity (min. 50 stars per bin, but most have >1000) $-15 \mathrm{~km} / \mathrm{s} \longrightarrow$ color: $\mathrm{V}_{\mathrm{Z}}(\mathrm{km} / \mathrm{s}) \longrightarrow 15 \mathrm{~km} / \mathrm{s}$

SDSS "waves": Widrow et al. 2012 (ApJL 750, 41); Yanny \& Gardner 2013 (ApJ 777, 91)

RAVE: Williams et al. 2013 (MNRAS 436, 101)

LAMOST: huge number of spectra, large contiguous sky coverage, SDSS-quality spectra

\rightarrow vast resource for kinematical substructure in the disk and halo

*** Look for "Tidal Streams in the Local Group and Beyond: Observations and Implications," ed. H. Newberg \& J. Carlin, published by Springer-Verlag, late 2015(?)

