Powerful jets in the Carina nebula

Megan Reiter University of Arizona

With: Nathan Smith (UA), John Bally (U Colorado), Pat Hartigan (Rice), Kate Brooks (CSIRO), Megan Kiminki (UA)

Hogerheijde 1998, after Shu et al. 1987

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee & Ostriker 2007

H α -bright bow shock

ORION NEBULA [SII]

M 43

NU Ori

. M from irradiated jets

- Measure $I_{h\alpha}$
- $I_{H\alpha} \sim n_e^2$ $\rightarrow \dot{M} = \mu m_H n_e V \pi r^2 f$

*assuming that the jet is fully ionized

Bally & Reipurth 2001

Carina Nebula

• 40 HH jets discovered with targeted ACS H α imaging

Smith et al. 2010

20'

Narrowband [Fe II] 1.26 μm and 1.64 μm

- Must be selfshielded to prevent ionization to Fe⁺⁺
- traces high density, low-ionization material
- [Fe II] reveals dense, neutral gas in these jets

Ionization front in the jet...

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan & Morse (2007), Kadjičc et al. (2012), McGroarty et al. (2007), Noriega-Crespo & Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H2 jet velocities from Zhang et al. (2013)

Reiter & Smith in prep

FIRE spectroscopy $\lambda = 0.8-2.5 \ \mu m$

- [Fe II] line ratios → jet density
 Doppler velocity
- 3. Br $\gamma \rightarrow$ accretion rate

Reiter & Smith in prep

Accretion-Outflow of intermediate -mass stars

Ellerbroek et al 2013

HH jets from intermediatemass stars

- Highly collimated
- [Fe II] traces high density, neutral material
- Proper motions and spectroscopy reveal 3D velocities similar to lowmass stars
- High-mass loss rates

 \rightarrow stars up to at least 8 M_{sun} form by same accretion mechanism as low-mass stars

