Powerful jets in the Carina nebula

Megan Reiter
University of Arizona

With: Nathan Smith (UA), John Bally (U Colorado), Pat Hartigan (Rice), Kate Brooks (CSIRO), Megan Kiminki (UA)

Protostar, embedded in 8000 AU envelope; disk; outflow

Herbig-Haro object

Accretion-Outflow

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee \& Ostriker 2007

UV / winds

Ha-bright bow shock

\dot{M} from irradiated jets

- Measure $\mathrm{I}_{\mathrm{h} \alpha}$
- $\mathrm{I}_{\mathrm{H} \alpha}{ }^{\sim} \mathrm{n}_{\mathrm{e}}{ }^{2}$

$$
\rightarrow \dot{M}=\mu m_{H} n_{e} \vee \pi r^{2} f
$$

*assuming that the jet is fully ionized

Carina Nebula

- 40 HH jets discovered with targeted ACS H α imaging

$\mathrm{E} \stackrel{\mathrm{N}}{\uparrow} \mathrm{HH} 666$
 20^{11}

New WFC3
UVIS/IR images
of HH jets in
the Carina Nebula

Narrowband
 [Fe II] $1.26 \mu \mathrm{~m}$ and $1.64 \mu \mathrm{~m}$

- Must be selfshielded to prevent ionization to Fe^{++}
- traces high density, low-ionization material
- [Fe II] reveals dense, neutral gas in these jets

Ionization front in the jet...

(a) HH 901
$5^{\prime \prime}$
$\mathrm{H} \alpha$

111
Q_{H} from Tr14
Smith (2006)
$\rightarrow \sim 10 x \dot{M}$ from H α EM

Faster?

0
.
Position along slit (arcsec) P.A. $=293.5^{\circ}$

Faster?

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan \& Morse (2007), Kadjǐc et al. (2012), McGroarty et al. (2007), Noriega-Crespo \& Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H2 jet velocities from Zhang et al. (2013)
Reiter \& Smith in prep

FIRE spectroscopy

$$
\lambda=0.8-2.5 \mu \mathrm{~m}
$$

1. [Fe II] line ratios \rightarrow jet density
2. Doppler velocity
3. $\mathrm{Br} \gamma \rightarrow$ accretion rate

Accretion-

 Outflow of intermediate -mass stars
HH jets from intermediatemass stars

- Highly collimated
- [Fe II] traces high density, neutral material
- Proper motions and spectroscopy reveal 3D velocities similar to lowmass stars
- High-mass loss rates

\rightarrow stars up to at least $8 \mathrm{M}_{\text {sun }}$ form by same accretion mechanism as low-mass stars

