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What is a debris disk?

.. _ Imaging shows emission from
Infrared emission of nearby main sequence  130AU dust ring with nearby

stars above photosphere: e.g., Fomalhaut planet-like object (kalas et al. 2013)
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Component of planetary system

. Jupiter
Planetesimal Sa'?um
® Uranus

belts are
analogous to
the Kuiper belt

¢ Pluto

Disk structure
IS Indicative of
the architecture
of the planetary
system




Descendant of proto-planetary disk

Protoplanetary disk Debris disk

Age <10Myr 10Myr — 1Gyr
Dust >10M,, optically thick, primordial ~ <1M,,,, optically thin, secondary

Structure  Broad 0.1-100AU Narrow ~30AU ring

Gas ~100x dust mass None, usually
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Debris disks are born as narrow rings

e.g., the pm-sized dust in the disk of 8Myr-old AOV HR4796 is

concentrated in a narrow ring at 70AU (Telesco et al. 2000; Schneider et al. 2009;
Thalmann et al. 2012; Perrin et al. 2014)




Age dependence from steady state evolution

a 24 pm

Statistics of detections .
: ® Observed (excess detected)

at 24 and 70Um (Rieke et al. 10: > Observed (no excess detected) 1L

. » Model 1
2005; Su et al. 2006) well fitted [ '
assuming debris disks
are born as narrow
rings, with a distribution
of radii, then decay by

collisional erosion (wyatt et ]
8.|.2007) il

— 150/t
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Same statistics not well
fitted if the disks are

radially broad (ennedy &
Wyatt 2010)
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Are some debris disks born broad?

ALMA map of .

850um O

emission from &

the 20Myr-old =

B Pic debris 3

disk at 0.5” =& e b=, I
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Broad disks can be long-lived
160Myr-old A1V y Tri has

a disk that can’t be Retired A star (2.5Gyr,
fitted as a narrow ring, 1.8M,,,) kK CrB has a
which 1s the case for belt 20-220AU (Bonsor et
~1/3 A stars resolved al. 2013)

with Herschel (Booth et al.

2013)F
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Planetary dynamics can broaden narrow rings

Planets can easily affect a debris disk, e.g., a
planet scattered onto a highly eccentric orbit near a
narrow ring (like Fom-b!) would quickly scramble the

disk structure (Beust et al. 2014; Tamayo 2014 Pearce & Wyatt in
T=0yr T=5Myr.. "~ ...
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Distant planets also affect disk structure
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Disk structures as planet indicators

(é@lé)

A warp in the B Pic
disk at 80AU
explained by
misaligned ~9M,,;er
planet at 8AU after

~20Myr of evolution

(Augereau et al. 2001; Chauvin
et al. 2012)

Tightly wound
spirals in the 5Myr
HD141569 disk at
100s of AU may be
explained by planets

on eccentric orbits

(Clampin et al. 2003; Wyatt
2005)



Brightness asymmetry in the 3 Pic disk

Maps of 850um L T T o e
emission and CO :
toward B Pic show -—
asymmetry at

~50AU projected

separation, —— ——— =
coincident with a .

similar asymmetry
seen 1n mid-IR =

€8nd with warp)
photodissociates

in 120yr implying [ ==

it 1s secondary — § g :ile?§803§

i.e., comet
collisions
continually
replenish it at a
rate ~0.1M_.,/Myr




CO velocities show asymmetry is clump

Each pixel contains info Assuming Keplerian

on the C0 radial velocities the P-V
velocity; P-V diagram diagram can be

shows distribution of deprojected to get face-
velocities at each on view of CO
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Resonance sweeping model

The outward migration of a Saturn-
mass planet sweeps comets into its
resonances
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Explains wavelength dependent disk
structure

Sub-mm Mid-IR Scattered lightand CO (short-lived
continuum (small but short mid-IR (small gas)

(planetesimals) bound dust) unbound dust)

B Pic
observed

Face-on
resonance
sweeping
model
(Wyatt 2006)



Any relation between clump and

?
horseshoes: Similar wavelength
dependent morphology
seen 1in transition

disks (van der Marel et al.
2013)

Could the beta Pic
clump be a remnant of
the horseshoe? Or does
that structure
dissipate when the gas
goes.

Could resonance
sweeping contribute to
1.0 0.5 0.0 -0.5 —1 the horseshoe? 0Or does

. ARA("") large mass involved 1in
See Nienke van der Marel and FrancohxyMerabd preclude

talks this?




Hot dust

The other two A stars in the BPMG (i.e., at 20Myr just

after protoplanetary disk dispersal) both have dust at a
few AU

QeIilaiAgXAUhgfuimaged HD172555 has hot dust

unresolved hot component gz&giyéili :éi;};ed at 1-
at 4AU (smith et al. 2009) S PR PP
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Is this hot dust originate in asteroid belt analogues,

cometary sublimation, or ongoing terrestrial planet
formation?



Terrestrial planet formation

1.5~

At 1 AU growth of km-

sized planetesimals .
into Earth-sized <
planets is P _ F
understood, and ~ 05 amamany
models predict iDetection ™
detectable dust o[- threshold — 04020070

levels up to 100Myr 2 3 4 5 & 7 8
(Kenyon & Bromley 2005).




Gilant impact origin?
Mid-IR spectrum of HD172555
shows silica that could
originate in a high velocity
collision (Lisse et al. 2009; Johnson et
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How much of the
hot dust in
protoplanetary
disks originates
in terrestrial
planet formation?



From transition disk to debris disk
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Classification as protoplanetary or debris disk
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Evolution of gas mass

Gas is in general
not detected In

debris disks (pent et
al. 2005; Mo¢r et al. 2011)

B Picgasis
secondary (pent et al.
2014), likewise for 49
Cet (zuckerman & Song
2012; Roberge et al. 2013),
but some HD21997

gas primordial (késpal
et al. 2013)

HD141569 has
gas/dust~100 so

likely primordial (thi
et al. 2014)
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ALMA is pushing the limits of detecting

CO in debris disks (Matra et al. in prep)
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Gas 1n debris d1lSKS:
secondary?

CO gas 1n 30Myr HD21997 1is
consistent with Keplerian
rotation in 26-138AU disk
(Késpal et al. 2013)

primordial or

But dust is 55-150AU
(Mo6r et al. 2013) SO gas and
dust are not co-located
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Conclusionss ... e
Debris disks are descendants of protoplanetary dlSkS,

born as nar planetesimals, though some’.
r1ngs_ may be

Radial and a21mutha1 structt
)Y 1nteract10ns with planet

(warps, clumps) caused

: e,
Dust often seen at fEW~AU around young stars,
possibly from terrestrial planet formation processes

Low levels of secondary gas seen in some debri$
but does any primordial gas_remain?

1 “Transition involves 5 steps: (i) carving hole, (ii)

s removing mm-sized dust, (iii) clearing inner regions,

(iv) removing CO (v) concentrating planetesimdts into
'I’lng i PR ] : "~ : : ,

- o . g ! o™



What stirs debris disks?

Collisions between planetesimals lead to growth in protoplanetary disk,
but destruction in a debris disk; gas damps collision velocity in a PPD,
but what stirs it in a DD?

[Distant giant planets (Mustill & Wyatt 2009)
* But requires planets!

UGrowth of planetesimals to Pluto-sized objects (kenyon & Bromley 2010)
* But requires planetesimals confined to a ring, and must be
rapid

lUnstirred debris disks may have been found by Herschel (Heng & Tremaine
2010; Eiroa et al. 2011; Krivov et al. 2013)

* But these may be galaxies!



Alternative explanation: giant

collisions
Degeneracy in deprojection of 1w§ :
CO shows tail could lead the ool %
clump. 2 SS |
4 ) r
Debris from impact onto 85AU & f
Mars-sized parent escapes at § § ﬁ
~4km/s, stays as clump <1 § S0F ‘
orbit (580yr), but is o ol |
asymmetric for ~1000 orbits § é
(0.6Myr), as orbits go 4w5*mwﬁwWUJ§7Rﬂwwﬁww*g
through the collision point 150 -100  -50 50 100 150
which _has enhanced collision Distance along midplane (AU
rate : |
and < ‘

(Jacksc| é ) ] )




How big are the biggest objects in debris
disks?

Reproduces the CO position-
velocity diagram, but
disfavoured due to tentative

orhital mntinn nf rflimn 1i &+

. o T But, 1f correct,
§ o | implies giant
100} ; collisions are
2 N i ongoing in outer
& ) | regions of debris
2 ol ; disks, and suggests
s | | planet formation
g o % processes are ongoing
a i |
1100 | ? at 20Myr.
150} 1 Also highlights our
150 100 50 0 50 100 150 ignorance of size of
Distance along midplane (AU) 'L a rg e S-t Ob J e C'tS l n
§7 debris disks, since

onlv km-ci17zed
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Classification as protoplanetary or debris disk
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