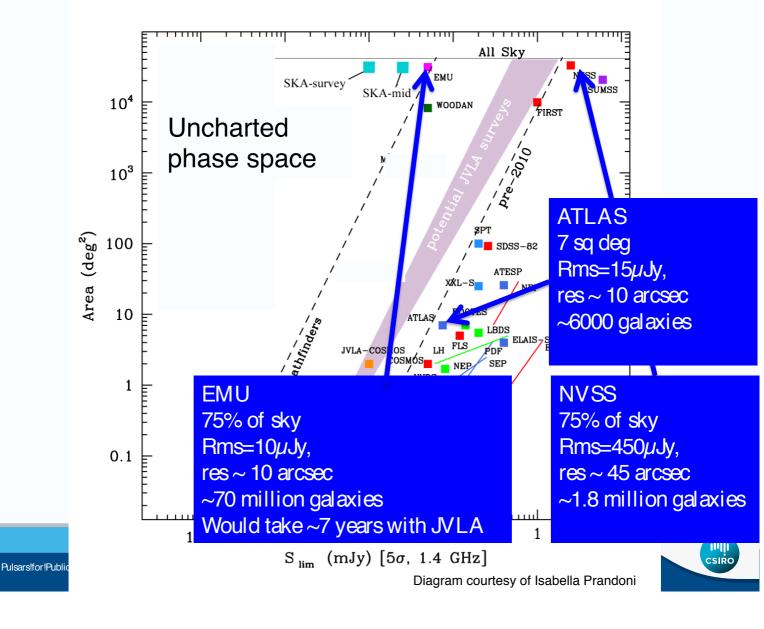

Future&arge&AGN&les&or& clustering&neasurements:& EMU&and&ts&AGN&le*


CSIRO&ASTRONOM Y&ND&PACE&CIENCE&CASS)& www.csiro.au

> Ray&Norris, & CSIRO&Astronomy& & pace & June & 2014&

EMU and its pathfinders

ATCA – ATLAS (2006-2013) 6 antennas single-pixel

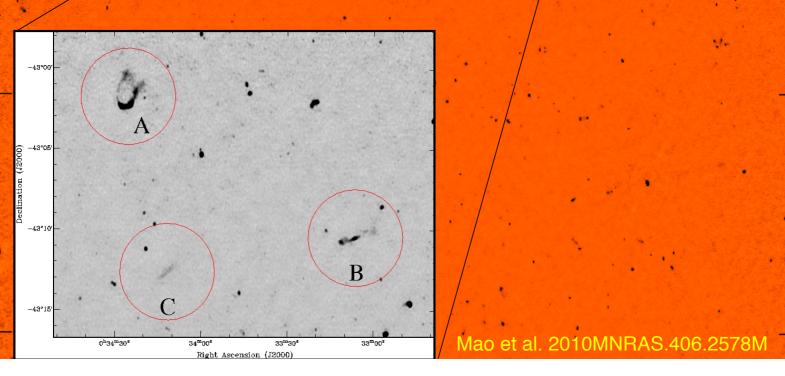
ASKAP – EMU (2016-2018) 30-36 antennas MkII PAF

SKA1-SURVEY (2022-???)

Comparison: NVSS 3π sr Rms=450 μ Jy 1.8 million galaxies

7 sq deg Rms=15 μJy 6000 galaxies

100 sq deg Rms=40 µJy 30,000 galaxies 300 clusters?


1000 sq deg Rms=30 μ Jy 0.5 million galaxies

 3π sr Rms=10 μ Jy 70 million galaxies

3π sr Rms=2 μJy 500? million galaxiessiko

ATL Australia	AS Telescope Large Area Survey	
Home	7 sq deg in CDFS, ELAIS-S1 SWIRE fields 15 uJy rms, plus polarisation, spectral index, etc.	
Our Science Goals	Deep coverage from SWIRE, SERVS, Hermes, VIDEO, etc Also spectroscopy, photometry, etc	
Current Status	Data Release 1: Norris et al. 2006, Middelberg et al. 2008	
New Results	Data Release 2: Hales et al. 2013 Data Release 3: Franzen et al 2014, Banfield et al. 2014 Other multiwavelength follow-up, VLBI, etc. Collaborations with Hermes, VIDEO, DES, etc.	
Publications		
Data Release	Science:	
Our Team	Galaxy evolution (Lilly-Madau diagram, luminosity function, etc) AGN evolution (CSS, GPS, IFRS, Hi-z AGN, etc)	
Team Pages assword protected)	AGN feedback & environment Clusters, etc	

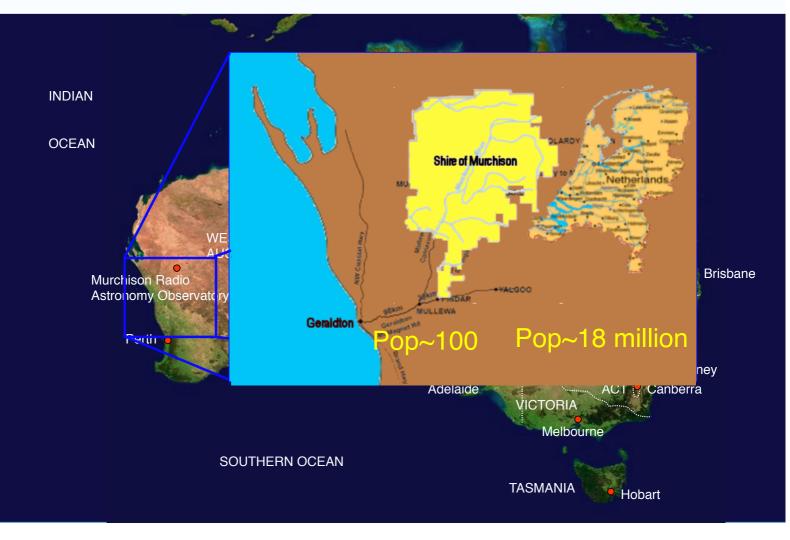
The EMU Pathfinder: ATLAS=Australia Telescope Large Area Survey 7 sq deg to rms=15 μ Jy

ASKAP Australian SKA Pathfinder

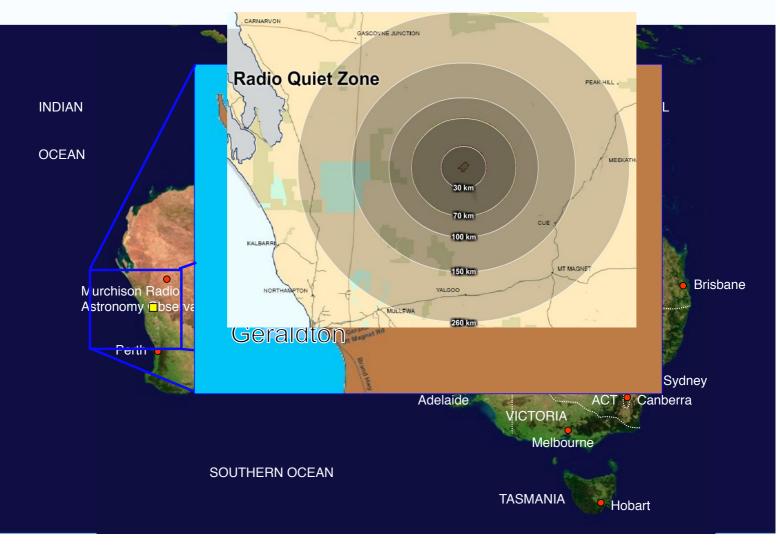
A\$170M (=€120m) project now under construction in Western Australia

First shared-risk science (with 12 antennas) ~ mid-2015

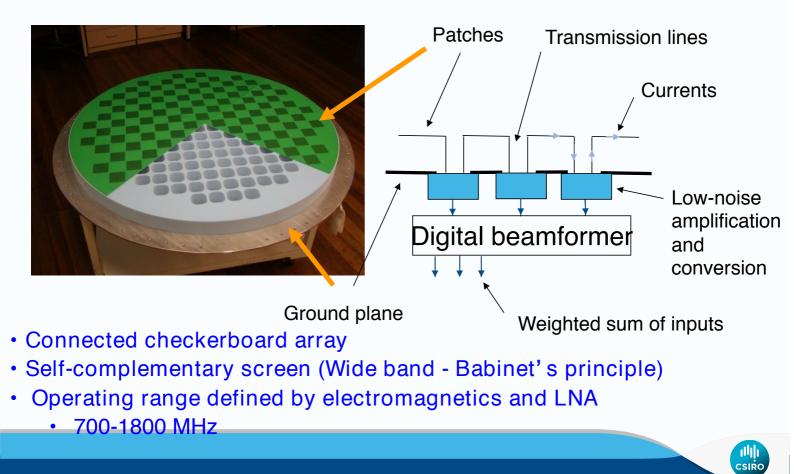
Completion 2016-7?


36*12m antennas

Antennas have a 192-pixel phased array feed (PAF)

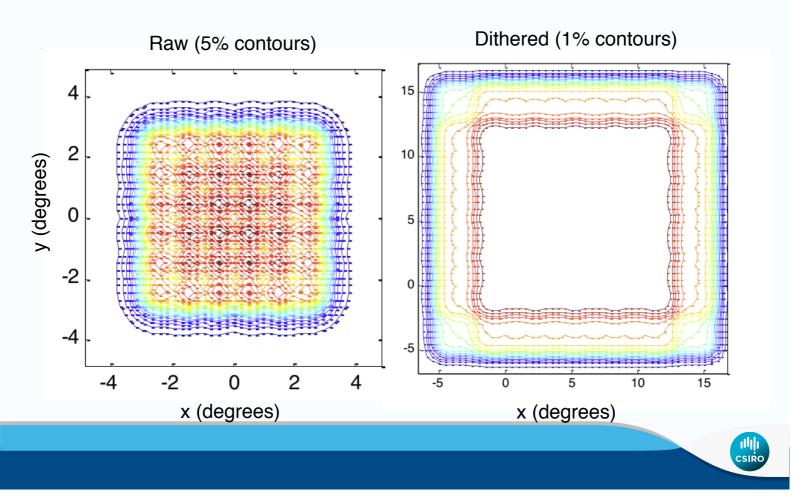

30 sq. deg FOV!

Australia – WA – Midwest – Murchison


Australia – WA – Midwest – Murchison



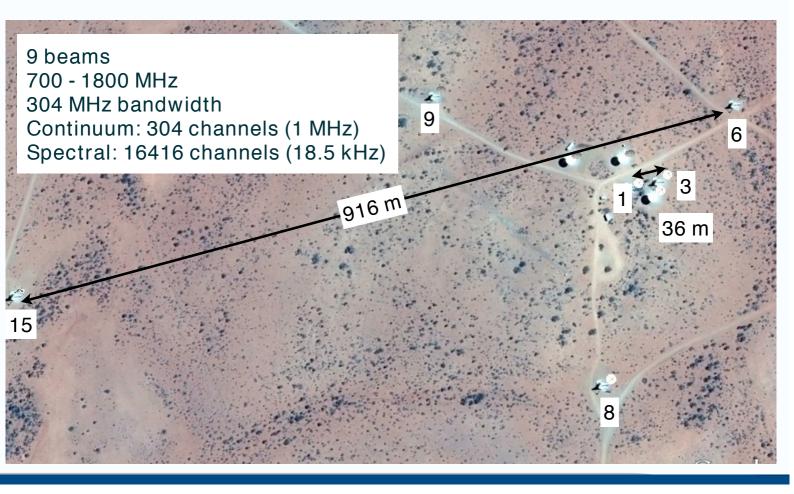
Population density ~ 1 nanoperson m⁻²


ASKAP 188-element Phased Array Feed

Total bandwidth = 2.1THz per antenna

ASKAP PAF footprint

ASKAP Science


38 proposals submitted to ASKAP	• EMU all-sky continuum (PI Norris)
2 selected as being highest priority	 • WALLABY all-sky HI (PI Koribalski & Staveley-Smith)
8 others at a slightly lower priority	 COAST pulsars etc CRAFT fast variability DINGO deep HI FLASH HI absorption GASKAP Galactic POSSUM polarisation VAST slow variability

Current status

- All antennas and infrastructure completed
- 6-PAF-antenna BETA array currently operating with 9 beams
- Undergoing commissioning and debugging while final MkII (ADE) PAFs are being built
- Expect to have first MkII PAF at MRO in ~ July 2014
- Expect to have 8 MkII PAFS installed by ~Feb 2015
- Currently doing BETA science
- Mid 2015: "shared risk" ASKAP early science starts at night/ weekends

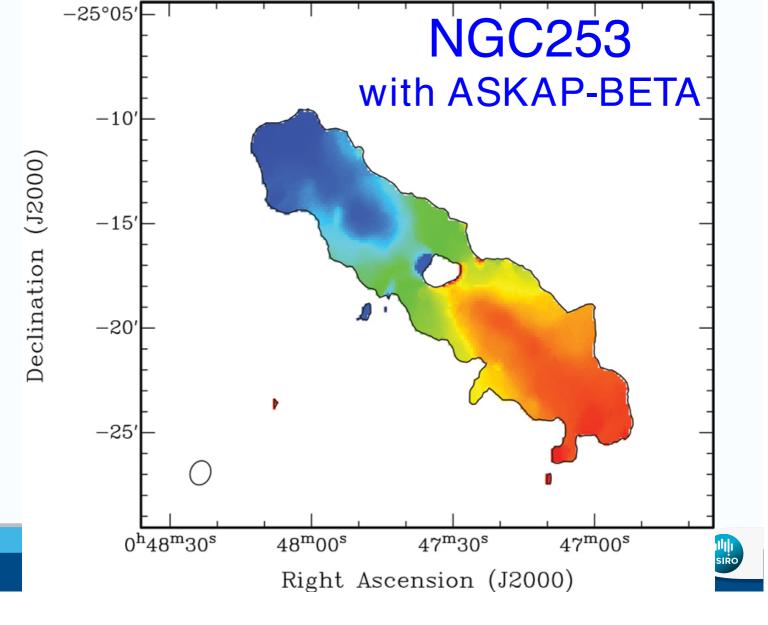
- Funding currently in hand for 30 ADE PAF's
- 2016-7????? Full ASKAP-36 available ??????

BETA%he%elescope

PAFs work! 6-antenna ASKAP-BETA with 9 PAF beams

8

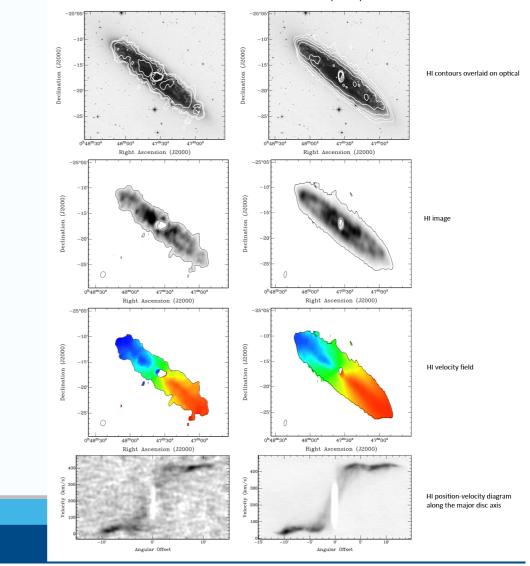
 \odot

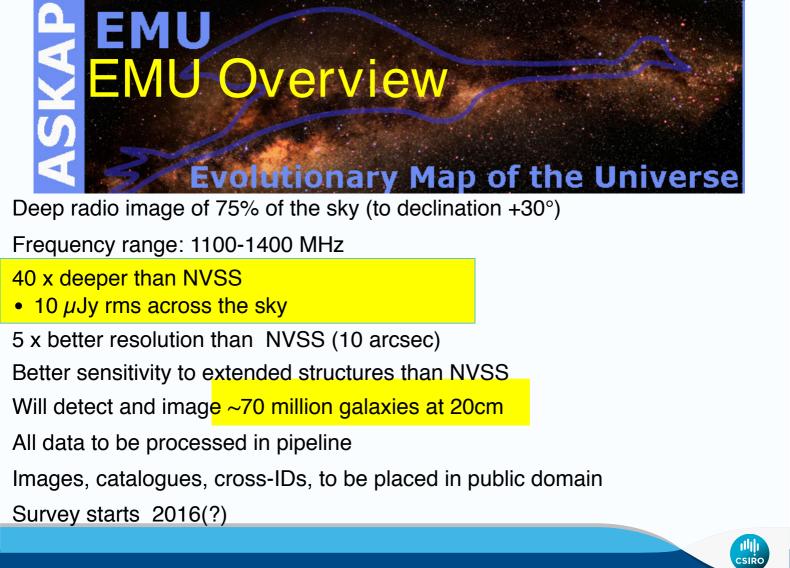

1 degree

700 - 1000 MHz

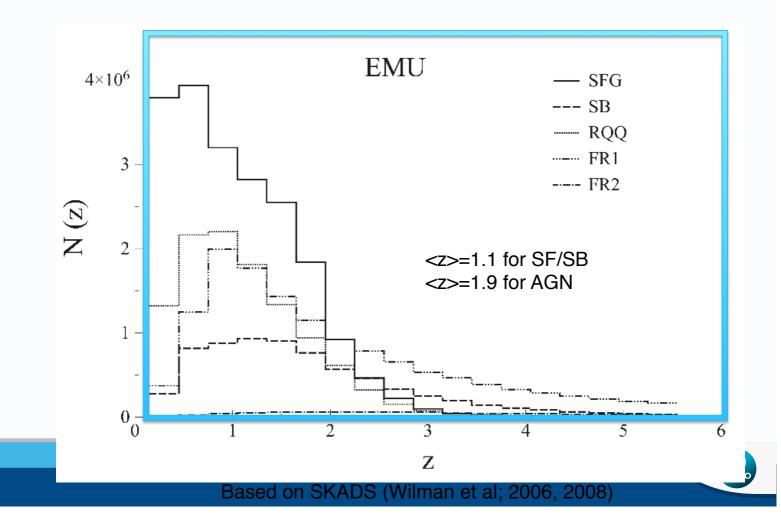
- 12-hour observation with BETA, covering ~9 sq deg. min RMS = 125 μ Jy (on track for ~10 μ Jy for EMU or ~2 μ Jy for SKA-survey!) Brightest source is 6.14 Jy, DR ~ 50,000 in the mosaic

6


- $\sim 300 \text{ sources} > 10\sigma$
- This 6-antenna engineering protoype is already the 2nd-fastest survey telescope in the world (beaten only by JVLA)



NGC 253


ASKAP (BETA) - 11h

ATCA (LVHIS)

Redshift distribution of EMU sources

Science Goals

- 1) Evolution of SF from z=2 to the present day,
- using a wavelength unbiased by dust or molecular emission
- 2) Evolution of massive black holes
- how come they arrived so early? How do binary MP
- what is their relationship to star-formation?
- 3) Explore the large-scale structure Universe.
- E.g, Independent tests of da
- estormand evolve? bservational parameter space

Jogical parameters of the

almost certainly findi

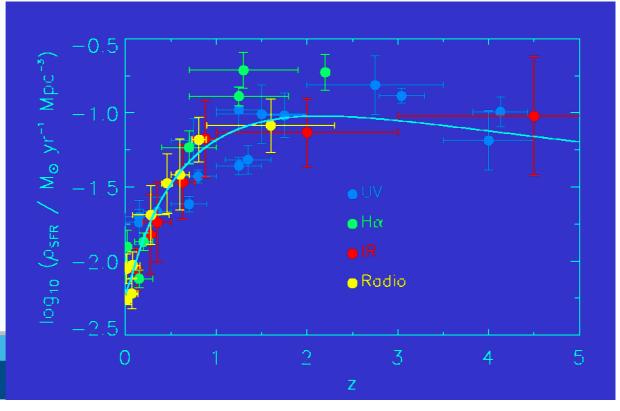
4) Explore an uncharted

6) Generation

7) Cr

use low-surface-brightness radio objects 5) Explore Clu

es of object.


- the Galactic Plane
- for surveys at all rschel, JWST, ALMA, etc)

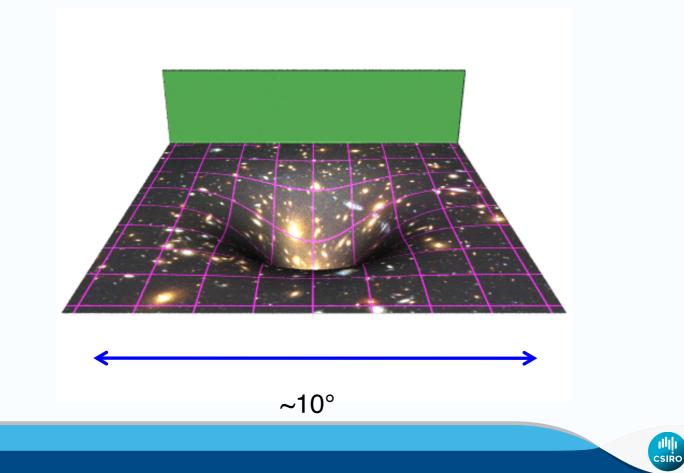
Science Goal 1: measure cosmic SFR, unbiased by dust

To trace the evolution of the dominant star-forming galaxies from z=5 to the present day, using a wavelength unbiased by dust or molecular emission.

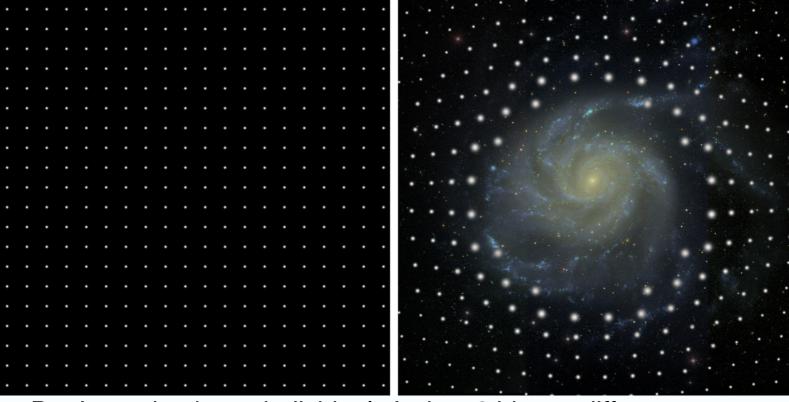
- Will detect about 45 million SF galaxies to z~2
- Can stack much higher
- Can measure SFR unbiased by extinction

EMU Science Goal 3: Cosmology

Four!sta6s6cal!measurements!!can!be!made!using!the!EMU!source! catalog:!


- OrossAcorrelate!galaxy!density!with!OMB!A>!ISW!effect!
- OrossAcorrelate!nearby!galaxies!with!distant!galaxies!
 !A>!lowAz!cosmic!magnifica6on!
- CrossAcorrelate!distant!galaxies!with!OMB!
 !A>!highAz!cosmic!magnifica6on!
- utoAcorrelate!radio!

None!of!these!requires!morphology!


None!of!these!requires!redshiO!informa6on!

But leven!limited!redshiOlinforma6on!improves!the!test!

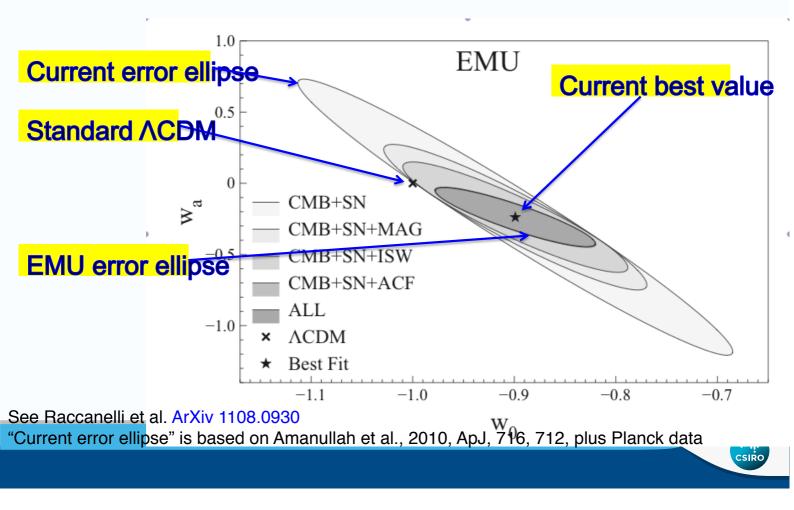
Cosmic Magnification

Don't need to know individual z's, just 2 bins at different z BUT do need to ensure there is no overlap between samples

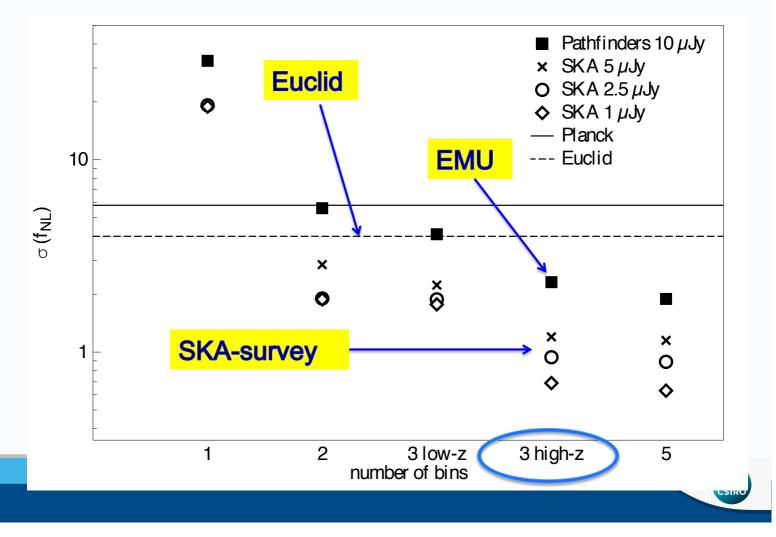
The ecological niche of EMU Cosmology

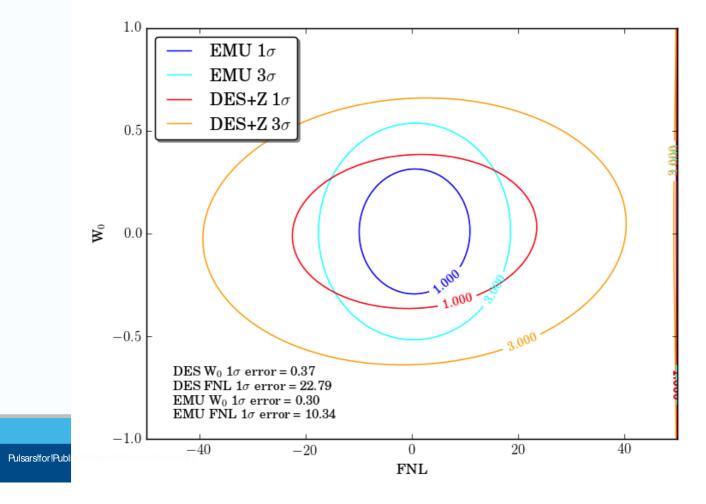
- 1. (nearly) all sky
 - Uniform coverage over 3π steradians (or 4π with Westerbork-WODAN)
- 2. High redshift
 - <z>~1.5, or <z>(AGN)~1.9
- 3. High space density
 - ~2000 sources per square degree, 70 million total
- 4. Low spatial resolution
 - $\theta \sim 10$ arcsec, so can't use cosmic shear
- 5. Incomplete redshift information
 - We don't have 70 million spec-z's!
 - But we do have significant statistical redshift information
 - Can divide EMU sources into redshift bins

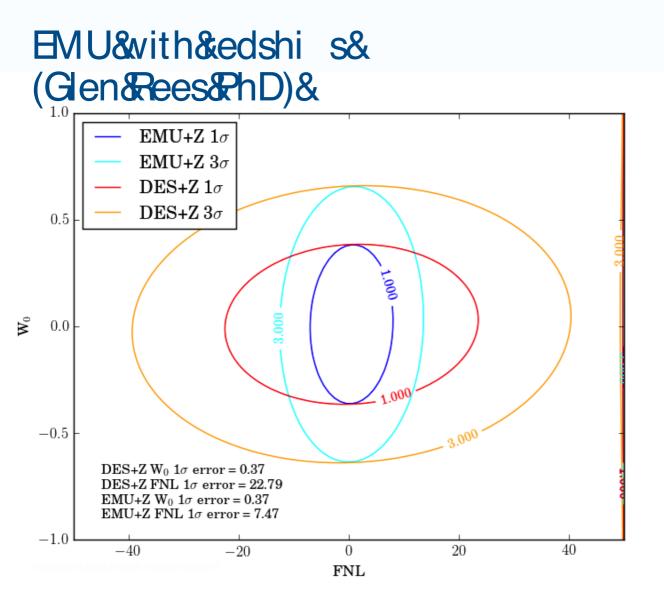
The four probes of EMU Cosmology


- 1. Auto-correlations of radio data
- -> spatial power spectrum
- 2. Cross-correlation between (z<0.5) optical foreground galaxies and (<z>~1.5) EMU galaxies
- -> cosmic magnification at low z
- Only needs 2 redshift bins

3. Cross-correlation between EMU galaxies and CMB ($\theta < 1^{\circ}$)


- -> cosmic magnification at high z
- Doesn't need redshifts
- Good match to EMU
- 4. Cross-correlation between EMU density and CMB ($\theta \sim 10^{\circ}$)
 - Using Integrated Sachs-Wolfe effect
 - Standard ACDM predicts no high-z ISW
 - Massive neutrinos do predict high-z ISW


Dark Energy


Non-gaussianity Raccanelli et al., 2014, arXiv1406.0010

EMU&with&ao&edshi s& (Glen&Rees&PhD)&

IIIII SIRO

Limiting factors for EMU cosmology

We!need!to!include!the!effects!of:!

Uncertainty!in!bias!

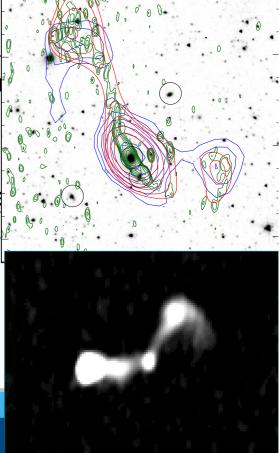
Systema6c!data!errors:!

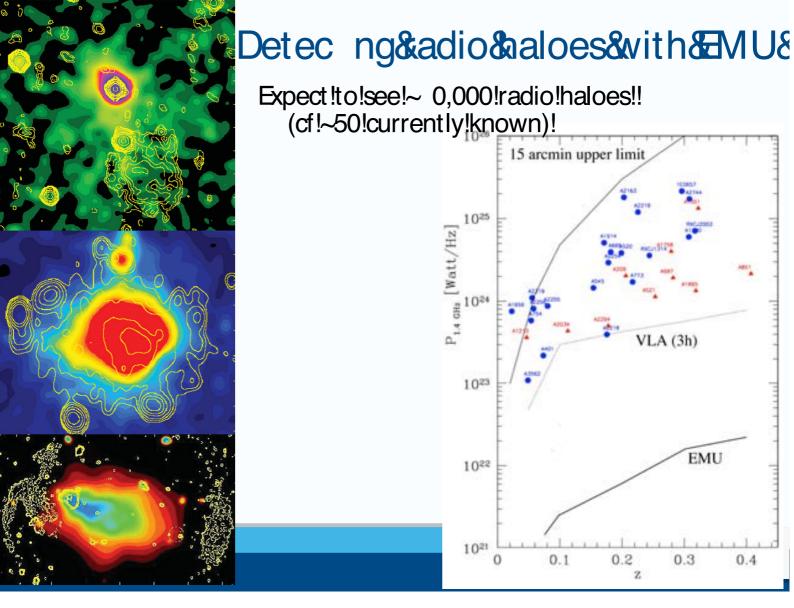
- Hux!calibra6on!
- Window!func6on!
- Lacklofluniformity!
- Subtle!data!bias!(clean!bias,!! noise!bias,!etc)!
- stremetry!

Errors!in!redshiO!distribu6ons!(where!used)!

Science goal 5: Clusters of Galaxies ~10 clusters per square degree Dehghan et al., 2014

In!4!sq!deg!of!the! TL SODFSfield,!we!find!**

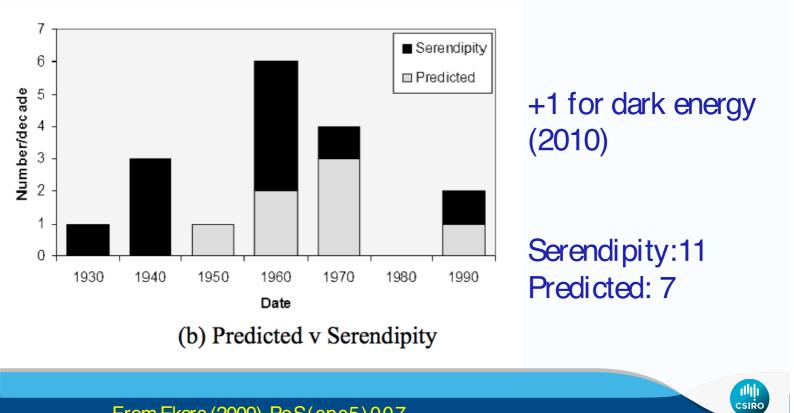

- 44!clusters!via!tailed!galaxies!(up!to!z~2)!
- 1!relic!
- 2!puta6ve!haloes!
- Needs!to!be!confirmed!but!Subrahmanyan et!al.!see!similar!numbers!in! TLBS


Scaling!this!up!to!EMU..!

- 300,000!clusters!detected!via!tailed!galaxie
- (maybe)! 0,000!haloes!

c.f.!ePosita!~100,000!expected!

- SK _survey!will!see!~5!6mes!as!many?!
- Short!baselines!are!important !



EMU&Science&Goal&4:& Searching&or&he&inexpected&

What fraction of discoveries in astronomy were "planned"?

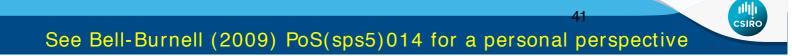
From Ekers (2009) PoS(sps5)007

Discoveries&vith&HST&allo:!arXiv:1203.0002)!

Project&	Key& project&	Planned?8	Nat.& Geo.&op& ten?&	Highly& cited?&	Nobel& prize?&
Use!Cepheids!to!improve!value!of!H0!	✔ &	✔ &	√ &	✔ &	
study!intergalac6c!medium!with! uv!spectroscopy!!!	✔ & !	✔& !			
MediumAdeep!survey!	✔ &	✔ &			
Image!quasar!host!galaxies!		✔ &	✔ &		
Measure!SMBH!masses!		✔&	✔ &		
Exoplanet!atmospheres!		√ &	✔ &		
Planetary!Nebulae!		√ &	✔ &		
Discover!Dark!Energy!			✔ &	✔ &	✔&
Comet !Shoemaker A evy!			✔ &		
Deep!fields!(HDF,!HDFS,!UDF,!FF,!etc)!			✔ &	✔ &	
Proplyds!in! rion!			✔ &		
GRB!Hosts!			✔ &		
					CSIRO

Discoveries&vith&HST&allo:!arXiv:1203.0002)!

Project&		Key&	Planned?& Nat.&	Highly&	Nobel&		
	Summary:			&	prize?&		
Use!Cepheids!to							
study!intergalac uv!spectroscopy		S:					
MediumAdeep!s	! 1 was a key						
Image!quasar!ho							
Measure!SMBH							
Exoplanet lat mo		4 were planned by astronomers but were not key projects					
Planetary!Nebu	but were no						
Discover!Dark!E	i de la companya de l				✔ &		
Comet !Shoemal	! 5 were tota	5 were totally unexpected (e.g.					
Deep!fields!(HD							
Proplyds!in! ric		,	• •				
GRB!Hosts!			✔ &				
					CSIRO		


The discovery of pulsars

Jocelyn Bell:

explored a new area of observational phase space

- knew the instrument sufficiently well to distinguish interference from signal
- observant enough to recognise a sidereal signature
- open minded prepared for discovery
- within a supportive environment

persistent

Could Jocelyn Bell Discover the Unexpected in SKA data?

- Data volumes are huge cannot sift by eye
- Instrument is complex no single individual will be familiar with all possible artifacts
- Humans won't be able to find the "unknown unknowns"
- Can we mine data for the unexpected, by rejecting the expected?

If not, SKA will not reach its full potential

mining radio survey data for the unexpected

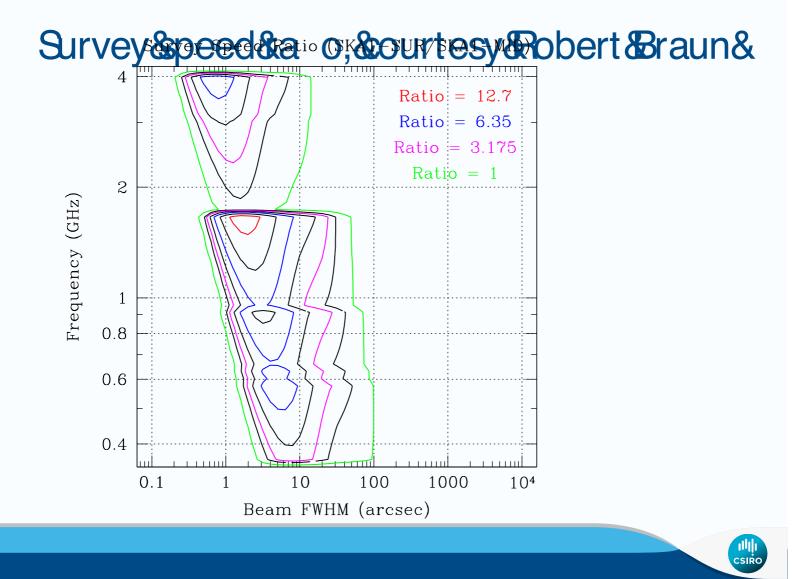
WTF = Widefield ouTlier Finder

Mining large data sets for the unexpected

- WTF will work by searching the n-dimensional (large n) phase space of observables, using techniques such as
- Decision tree approach
- Zoo approach
- Cluster analysis
- k-nearest-neighbours
- self-organised maps
- Bayesian approach to combine all the above

Identified objects/regions will be ether

- processing artifacts (important for quality control)
- statistical outliers of known classes of object (interesting!)
- New classes of object (WTF)


What & lo&urveys & lo&lo & liscover & he & unexpected ? &

- Maximise&he&olume&f&ew&hase&pace&
 - !good!surrogate!is!to!use!#!of!known!objects!
 - Maximised!by!an!allAsky!survey!
- Develop&data&nining&o ware&o&earch&or&he&unexpected& &
- Retain&lexibility!

THANK YOU FOR BEING RADIO QUIET

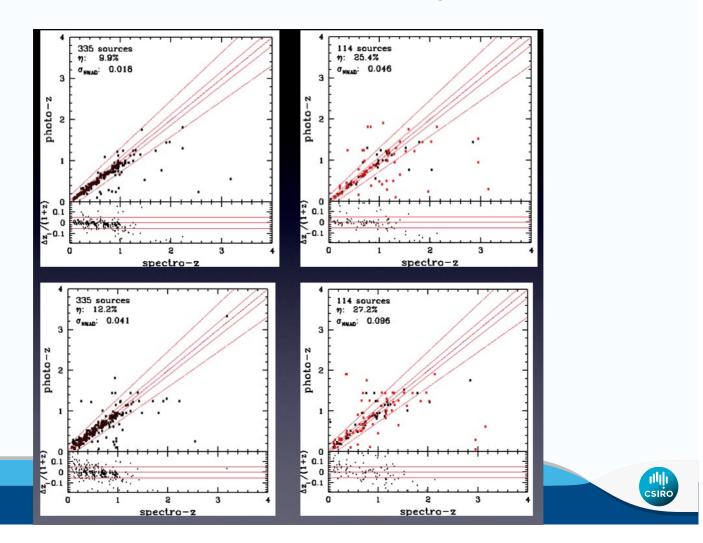
EMU&Science&Goal&S:&The&deepest,&highest&esolu on&atlas&yet&f&he& Galac c&Plane&

From the "SCORPIO" EMU design study project Slide courtesy of Grazia Umana and Corrado Trigilio

Radio image superimposed on the Hi-GAL image: color code radio (red); PACS 70µm (blue), PACS 160 µm (green)

Challenge: difficult to get redshifts, or even optical/IR photometry

Survey	Area	Wavelength	Limiting	\mathbf{EMU}	Survey	Data
Name	(deg^2)	Bands	Mag.	Detected	Matched	Relea
	, . ,		or flux ^a	(%)	(%)	Date
WISE ¹	40000	3.4, 4.6, 12, 22 μm	$80\mu { m Jy}$	23	100	2012
$Pan-Starrs^2$	30000	g,r,i,z,y	r < 24.0	54	50	2020
Wallaby ^{3,b}	30000	$20\mathrm{cm}$ (HI)	$1.6\mathrm{mJy^{c}}$	1	100	2013
$LSST^4$	20000	u,g,r,i,z,y	r < 27.5	96	67	2020
Skymapper ⁵	20000	u, v, g, r, i, z	r < 22.6	31	66	2015
VHS^{6}	20000	Y, J, H, K	K < 20.5	49	66	2012
$SDSS^7$	12000	u, g, r, i, z	r < 22.2	28	22	DR8
DES^8	5000	g,r,i,z,y	r < 25	71	17	2017
$VST-ATLAS^9$	4500	u, g, r, i, z	r < 22.3	30	15	2012?
Viking ¹⁰	1500	Y, J, H, K	K < 21.5	68	5	2012
Pan-Starrs $Deep^2$	1200	0.5-0.8,g,r,i,z,y	g < 27.0	57	4	2020



The EMU Redshift WG

- Only ~1% of EMU sources will have spectroscopic redshifts (most from WALLABY)
- Generating photometric redshifts for AGNs is notoriously unreliable
- EMU redshift group (Seymour, Salvato, Zinn, et al) exploring a number of different approaches:
- conventional template fitting
- kNN algorithms
- SoM algorithms
- etc

kNN does remarkably well!

Another alternative approach: Statistical Redshifts

Philosophy: Obtain the redshift distribution without necessarily measuring individual z's

- 1) Polarisation
 - mean redshift of polarised sources ~1.9
 - mean redshift of unpolarised sources ~1.1
- 2) Spectral index
 - Steep spectrum sources have a higher redshift than moderate spectrum sources
- 3) Radio-k relation
 - High values of $S_{20cm}/S_{2.2\mu m}$ have high z
 - even a non-detection is useful

Combining all the above indicators (+ others)

 Use a Bayesian approach to assign a probabilistic redshift distribution (=> statistical redshifts)

CSIRO

Using incomplete redshift data to test hypotheses