

₹UCSD

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies

Mirko Krumpe (ESO, UCSD) mkrumpe@eso.org

Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD), Hector Aceves (UNAM-E), Bernd Husemann (ESO, AIP)

Motivation

Status before 2009:

- bias of broad-line AGN well-known at high z
- evolution with redshift remains unclear
- ⇒ measure bias of BL AGN at low redshifts!

However: low number density of broad-line AGN at low z

use cross-correlation measurements with galaxies in a large volume

Mirko Krumpe

Outline

• Use ROSAT/SDSS clustering measurements to precisely constrain M_{DHM} at low z (Krumpe et al. 2010)

• Expand the method to lower and higher redshifts and optically selected SDSS AGN (Krumpe et al. 2012)

• Explore clustering dependence in respect to M_{BH} and/or L/L_{EDD} (Krumpe et al. in prep.)

Method

Mirko Krumpe

ROSAT All-Sky Survey/SDSS AGN sample

 still the most sensitive all-sky (soft) X-ray survey, with ~110,000 sources (Voges et al. 1999)

• 6224 broad-line AGN with spectroscopic redshifts from SDSS (Anderson et al. 2003, 2007)

• L_{X} ~ 10⁴²-10⁴⁷ erg s⁻¹

Mirko Krumpe

Cross-correlating galaxy sample

requirements for tracer set:

high number density (>> AGN) & well-defined and replicable selection

Mirko Krumpe

Clustering strength of low-z AGN

Mirko Krumpe

Taking the next steps

Krumpe et al. (2012)

- extend to higher and lower redshifts (z=0.07-0.50)
- X-ray and optically selected AGN samples
- AGN sample selection: radio-quiet, optical without X-ray counterparts, radio-quiet and no X-ray AGN, X-ray no optical

SDSS AGN sample

- ~18 candidates per deg²
- 105,783 broad-line AGN
- fainter than i~15 mag
- M_i brighter than -22 mag

(Schneider et al. 2010,

Richards et al. 2002)

Mirko Krumpe

Cross-correlating galaxy samples

requirements for tracer set:

high number density (>> AGN) & well-defined and replicable selection

Mirko Krumpe

X-ray vs. optically selected AGN

General picture of AGN clustering

over cosmic time AGN reside in $M_{DHM} \sim 10^{13} M_{SUN}$

low redshift (z<0.5)

- broad-line and narrow-line cluster like ≥L* galaxies or a small galaxy group of ~L*
- no statistically convincing difference in the clustering of X-ray and optically selected broad-line AGN
- weak luminosity dependence of the clustering for broad-line AGN (high L_XAGN \Rightarrow cluster higher \Rightarrow similar to red galaxies)

high redshift

- X-ray selected AGN appear to cluster more strongly than optically selected AGN ⇒ real?
 - ⇒ why: different populations, different luminosities?

Origin of the weak L_X dependence of the broad-line AGN clustering strengths at low z

Mirko Krumpe

Motivation

Krumpe et al. in prep.

Galaxy clustering measurements:

• clustering strength depends on galaxy properties (e.g., luminosity, morphological type, stellar mass)

more luminous ⇔ more clustered ⇔ more massive dark matter halos (DMHs)

AGN clustering measurements:

• constraints on theoretical models of AGN triggering, AGN host galaxy properties & cosmological parameters

Do AGN properties correlate with clustering strength?

AGN luminosity dependence of the clustering

Krumpe et al. (in prep.):

explore physical origin of clustering dependence \Rightarrow caused by M_{BH} or/and L/L_{EDD}?

Mirko Krumpe

What is predicted?

Booth & Schaye (2010): cosmological simulations: M_{BH}~M_{DMH}

use AGN clustering measurements to test predictions

Mirko Krumpe

Determine M_{BH} for the RASS/SDSS AGN sample

Mirko Krumpe

M_{BH} - L/L_{EDD} plane

Mirko Krumpe

Unbiased split distributions

only within each L/L_{EDD} bin, split distributions of M_{BH} values

Mirko Krumpe

Main Result: M_{BH} correlates weakly with M_{DMH}

difference is more prominent in 2D parameter space

Mirko Krumpe

Theory vs. Observation

reasonable agreement

Mirko Krumpe

Consequences

At the luminosity and redshift range studied: (BLAGN; $L_X \sim 10^{43}$ - 10^{45} erg s⁻¹; 0.16<z<0.36)

NO correlation with L/L_{EDD}:

higher densities of galaxies/larger DMH masses do NOT cause more accretion of matter

Correlation with M_{BH}:

high X-ray luminosity AGN do not require dense environments ⇒ mergers play only a minor role in the accretion process

Conclusions

• we accurately measure the clustering of X-ray and optically selected AGN at low redshift through CCFs (Krumpe et al. 2010, 2012)

Broad-line, luminous AGN (z=0.07-0.5):

 No statistically convincing difference between: X-ray, optically selected, radio-quiet AGN

 $\ensuremath{\cdot}$ weak L_X dependence of the clustering strength

 $L_{\rm X}$ dependence of the clustering strength is mainly caused by a dependence on $M_{\rm BH}$

more results of the project will be presented in T. Miyaji's talk

Mirko Krumpe