Low redshift quasars in the SDSS Stripe 82: Local environments

Kalle Karhunen¹

Jari Kotilainen^{1,2} Renato Falomo³ Daniela Bettoni³

¹ Tuorla observatory, University of Turku
 ² FINCA - Finnish Centre for Astronomy with ESO
 ³ Osservatorio Astronomico di Padova

Karhunen, K. et al. 2014, MNRAS, 441, 1802

16.7.2014

Quasar environments – what's the big deal?

- What triggers the activity?
 - Internal causes?
 - External causes?
- Galaxy interactions/mergers more common in denser areas
 - → More quasars in dense areas?

Merging Galaxies NGC 2207 & IC 2163 NASA / JPL-Caltech / D. Elmegreen (Vassar) Spitzer Space Telescope • IRAC ssc2006-11a

Quasar environments

- Earlier studies show mixed results:
 - Smith et al (2000) found quasar environments consistent with normal galaxies
 - Wold et al (2001) found a galaxy excess within 0.5 Mpc radius
- In general quasars thought to occur in "denser" areas
- No dependence of density on z at low redshifts
- More luminous quasars have larger overdensities at < 100 kpc radius, but the difference disappears at ~Mpc scales (Strand et al. 2008)
- Effects of radio luminosity still unclear(?)
- Early studies had mainly small sample sizes of few tens of objects, and no control samples (or poorly matched ones)
- More recent studies (e.g. Serber et al 2006, Strand et al. (2008)) have taken advantage of the larger samples provided by surveys like the SDSS → several thousand objects

What is there left to do?

- For environment studies, SDSS is used to get large samples, but the images are "too shallow" to get the complete picture
 - Standard SDSS data can reach a depth of m_i ~21
- Additionally, for studies on environments, important to have a control sample of non-active galaxies with similar properties to the QSO sample
- Previous studies generally only match samples based on redshift

Stripe 82

- Covers a total area of ~270 deg^2 between $\ -1.25 < Dec < 1.25$ and 310 < RA < 59
- Each piece of the area imaged ~80 times
- Coadded images ~2 magnitudes deeper

Choosing the sample

- Redshift: 0.1 < z < 0.5
- Full QSO sample (FQS):
 - Selected from SDSS QSO Catalogue (Schneider et al. 2010)
 - 416 QSOs: $\langle z \rangle = 0.39 \pm 0.08$, $\langle M_{i,QSO} \rangle = -22.68 \pm 0.62$
 - Dominated by RQQ (only 24 RLQ)
- Full control galaxy sample (FCGS):
 - Selected a similar sized sample of "passive" galaxies with a distribution of redshifts close to that of the QSOs
 - 580 galaxies: $\langle z \rangle = 0.38 \pm 0.08$, $\langle M_i \rangle = -22.22 \pm 0.77$

Choosing the sample

- Selected a sample of 302 QSOs resolved by Falomo et al. (2014)
 → RQS: <z> = 0.38±0.08, <M_{i,host}> = -22.54±0.63
- Selected a subsample from the FCGS, matching the luminosities of the non-active galaxies to those of the resolved QSO hosts
 - \rightarrow MCGS of 288 Galaxies

<z> = 0.38±0.08 , <M_i> = -22.53±0.55

Studying the environments - Galaxy counting

- Need to count galaxies
 - i) around the QSO and
 - ii) in the background
- For this, need 4 images per object:
 - 1 "target" frame
 - 3 "environment" frames
- Object detection & classification done with Source Extractor
- Background:
 - Average density calculated from
 30 randomly chosen locations in
 the field

How deep can we <u>actually</u> go?

- To study completeness, compare measured galaxy counts to those expected
 - Compilation of published counts by Durham Cosmology Group*

Environmental overdensity

- Overdensity, G, defined as N_{env}/N_{bg}
- G falls with radius for both samples
- No statistically significant difference between samples

- Define G_{0.25} parameter: overdensity within a distance of 0.25 Mpc
- No dependence on overdensity found for any studied parameter (redshift, luminosity of the quasar or its host galaxy, mass of the central black hole)

- Additionally, no difference was found between RLQs and RQQs
- BUT:
 - Large uncertainties
 - Radio luminosity of our "RLQs" is low

- For control sample, trend found for both redshift and galaxy luminosity
- The two trends appear to be independent

Overdensities of quasar and control samples still consistent with each another!

Environment not as important for fueling and triggering quasar activity?

Summary

- QSO environments similar to those of regular galaxies
- Overdensity around QSOs (and control galaxies) largest at small radii (r < 200 kpc)
- No dependence on redshift, quasar host/nucleus luminosity, black hole mass or radio luminosity found
- The link between quasar activity and the environment less important than believed