NRC·CNRC

Dominion Radio Astrophysical Observatory

A new 408 MHz compact source catalogue

Joern Geisbuesch

with: Albert Tung CGPS team

National Research Council Canada Conseil national de recherches Canada

NRC CNRC

Dominion Radio Astrophysical Observatorv

CGPS data set

DRAO Synthesis Telescope:

408 MHz

7.5 MHz at 1407 MHz (A) 7.5 MHz at 1414 MHz (B) **Continuum Stokes I**

Continuum I, Q, U and V Continuum I, Q, U and V

256 channels of 4 MHz at 1420 MHz HI Atomic hydrogen

7.5 MHz at 1427 MHz (C) 7.5 MHz at 1435 MHz (D) Continuum I, Q, U and V Continuum I, Q, U and V

Accompanied by observations at other wavebands and matching resolutions (far-IR, ¹²CO survey and X-ray etc.)

Dust

Molecular gas

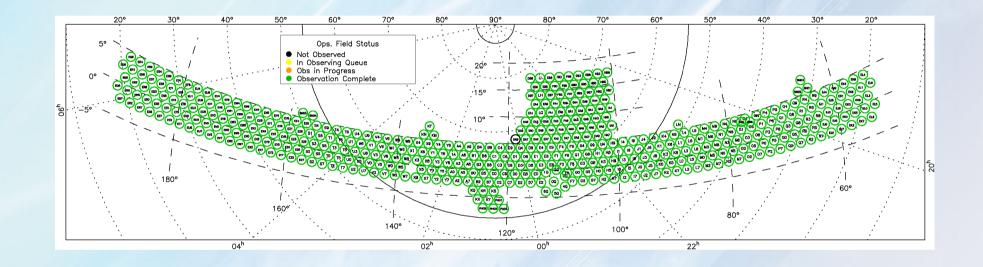
Ionized gas

Taylor et al. 2003

lonized gas, Magnetic fields

lonized gas, Magnetic fields

Dominion Radio Astrophysical Observatorv


DRAO Synthesis Telescope

DRAO 26 m DRAO 26 m DRAO synthesis telescope

408 MHz characteristics: Field of view: 8.2 deg Angular resolution: 2.8'x2.8'cosec(DEC) **Spatial frequency** coverage: 2.8' to 2.6 deg System temperature: 105 K + T_{sky} Continuum sensitivity: 3 mJy/beam (7x12 hrs)

Dominion Radio Astrophysical Observatory

CGPS DRAO ST sky coverage

Galactic plane coverage @ 408 MHz: 52<l<192; -6.7<b<8.7 Area coverage: ~2500 deg² (fairly uniform noise; extended area with degraded sensitivity) 1.4 GHz continuum and HI data taken simultaneously

Dominion Radio Astrophysical Observatory

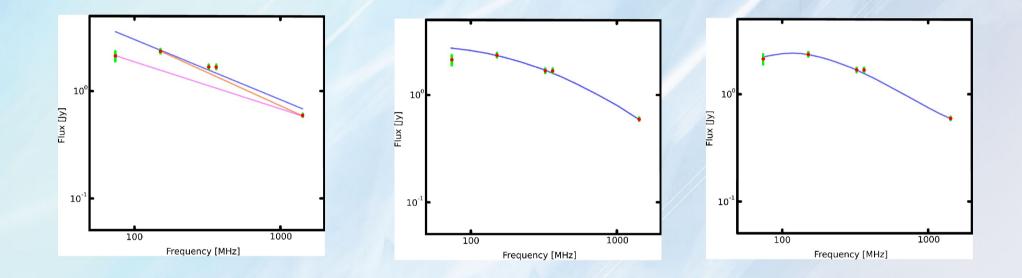
408 MHz catalogues

Suvey Name	Frequency (MHz)	Sky Coverage	Catalog Flux Limit (mJy) (5σ)	Source Number
Third Bologna Sky Survey	408	37°15'<δ<47°37' (epoch 1978.0)	100	13354
Molonglo Reference Catalog	408	-85°<δ<18.5°, b > 3° (7.85 sr)	1000	7347
Fifth Cambridge Survey	408 (1407)	13 Pencil beams of diameter 4° (@ 408 MHz)	10	3220

Dominion Radio Astrophysical Observatory

Re-calibration of 408 MHz data

Need for re-calibration:

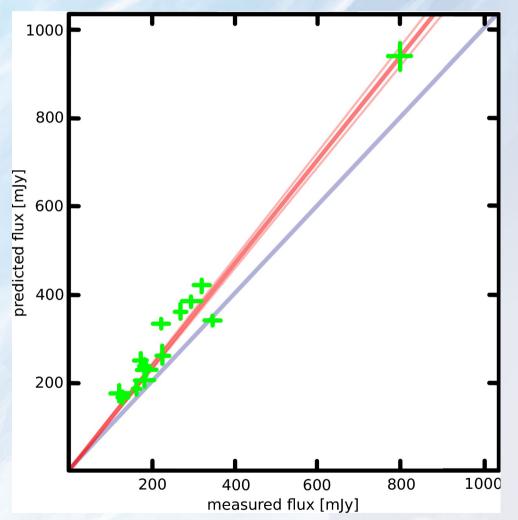

Automatic Level Control System to ensure an almost stable sensitivity for digitized correlation; voltages are not recorded \rightarrow absolute amplitude calibration from synchronized source observation not applicable

- Selection of calibration sources: spectrally well-behaved sources; used VLSS, 7C, Texas, WENSS, NVSS
- Derivation of calibration factors: comparison of map extracted flux with predicted flux from spectral fitting.
- In case of calibration sources shortage: utilization of adequate sources in overlapping neighbouring fields.

Dominion Radio Astrophysical Observatory

Calibration source selection

Spectral complexity


Spectral fitting: $\log S(\nu) = a + \alpha_1 \log \nu + (\alpha_2 \log^2 \nu + \alpha_3 \log^3 \nu)$ Evaluation of spectral complexity: $BIC = \chi^2 + k \ln(n)$

Discriminate against spectral complexity; select sources with power law spectra

Dominion Radio Astrophysical Observatorv

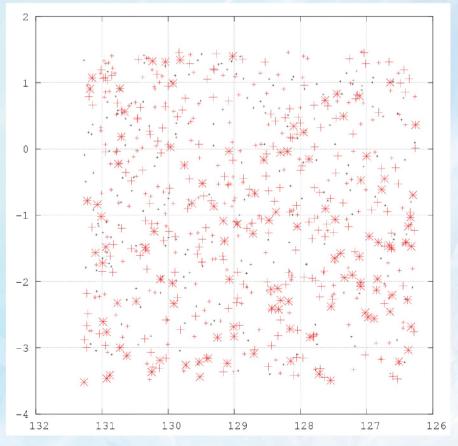
Calibration factors

- Calibration factors derived from flux density extrapolation
- Selection of calibration sources by spectral simplicity and signal-tonoise ratios of catalogued flux densities.
- All source flux values are brought onto the same absolute flux scale.

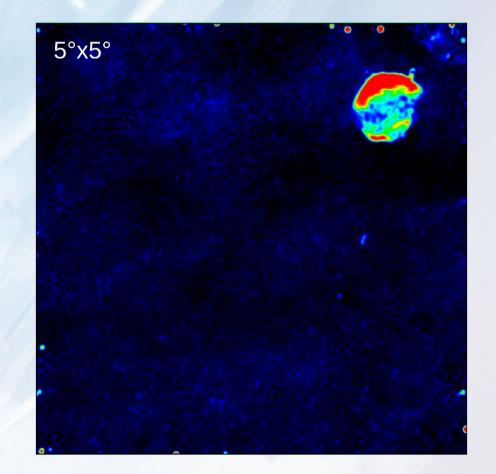
Dominion Radio Astrophysical Observatorv

Source extraction

Algorithm


- Tools:
 - The algorithm is based on DRAO Export Package routines
 - FINDSRC: Provides estimates on source coordinates and fitting parameters
 - Matched "point-source" wavelet filter to enhance point-like sources
 - Removal of point-source responses from the filtered image by Clark-like clean method
 - **FLUXFIT**: Source extraction using fitting boxes and parameters
 - computing flux densities, fitting Gaussians, correcting for beam shape, etc.
- Step-wise Procedure and iterations
 - Step 1: Iterative application of *FINDSRC/FLUXFIT*
 - Step 2: Iterative application of *Tiling/FLUXFIT* to go deep

DRAO export package: Higgs et al. 1997

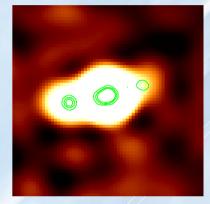

Dominion Radio Astrophysical Observatory

Source extraction

Positions of extracted compact sources (different styles indicate extraction step):

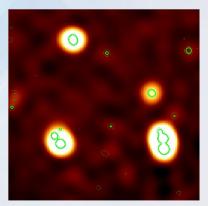
Residual image (extended emission and sources, noise):

NRC CNRC


Dominion Radio Astrophysical Observatorv

Source extraction

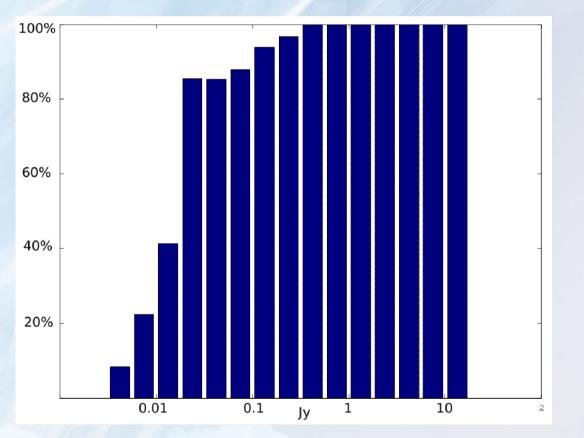
Complex morphologies of radio sources → resolved into two or more closely separated components. Majority of sources in CGPS 408 MHz (resolution: ~3 arcminute) are unresolved -> Simplification of extraction.


Otherwise multiple component sources can produce spurious clustering signal on small scales.

However, this complicates matching with other catalogues of higher resolution.

Radio galaxies: AGNs, jets and lobes

Contours: 1.4 GHz CGPS continuum data


NRC CNRC

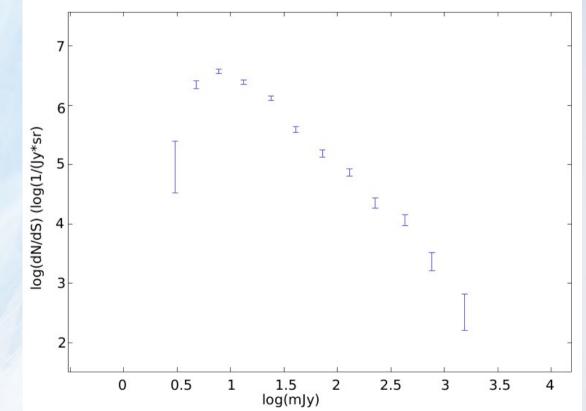
Dominion Radio Astrophysical Observatory

Catalogue properties

Completeness and Contamination:

- Estimation by simulations: Introducing compact sources at various flux densities into the data.
- Estimation by extrapolation: Using other catalogues to extrapolate and derive expectations for source numbers and locations in the survey data.

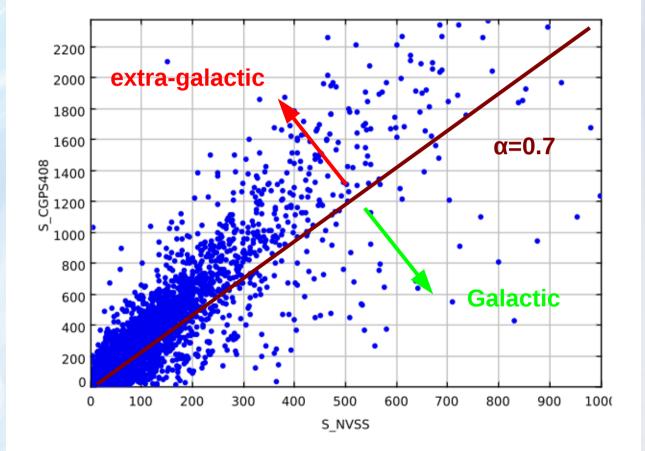
Dominion Radio Astrophysical Observatory


Radio source counts

Differential source count:

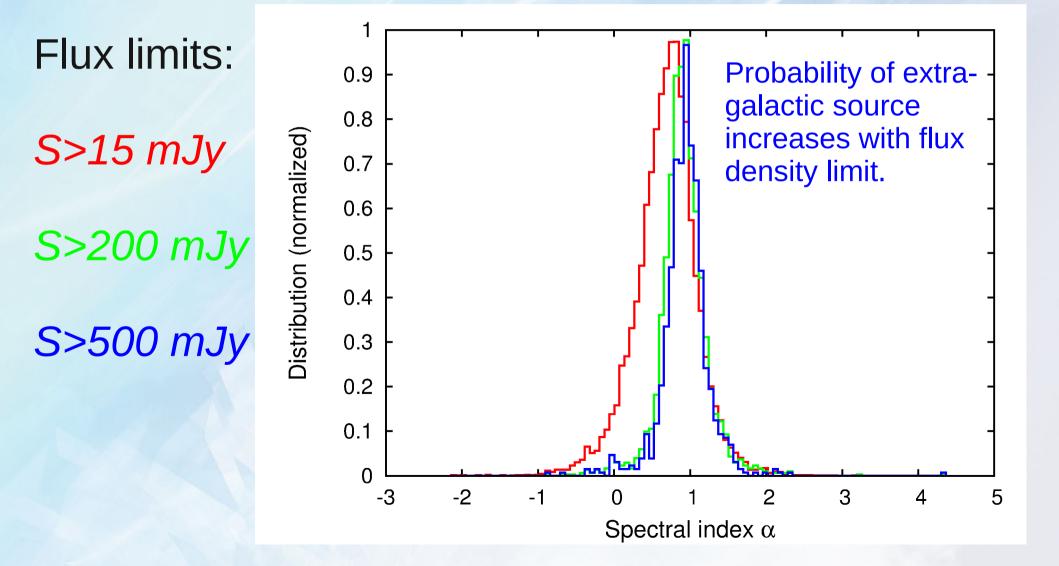
dN/dS=AS⁻

Power law behaviour for S_{lim} =15 mJy


Flattening and turn over due to incompleteness for S<15mJy

Dominion Radio Astrophysical Observatorv

Spectral source classification


Spectral index for sources from CGPS 408 MHz catalogue matched with NVSS 1.4 GHz catalogue (source at the 5σ flux density limits of catalogues with $\alpha >$ 1.13)

 $S(v)=S_{1.4GHz}(v/1.4GHz)^{-\alpha}$

Dominion Radio Astrophysical Observatorv

Spectral source classification

Dominion Radio Astrophysical Observatory

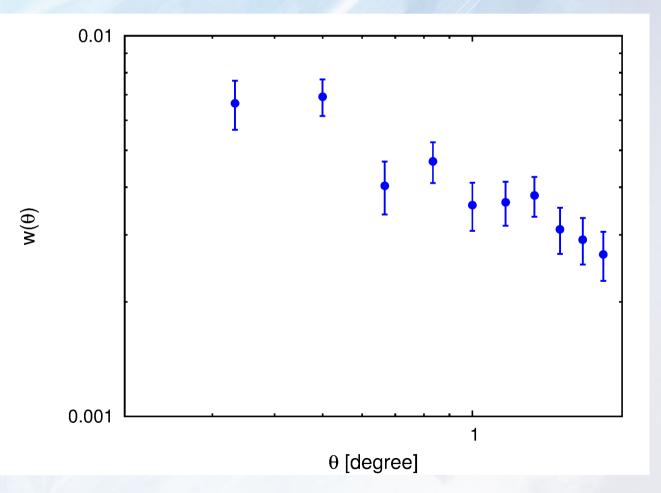
Catalogue properties Summary

Final catalogue properties forecast:

- Expect to achieve a catalog of high completeness
 (≥ 90 percent) above a flux limit of 5σms (15 mJy)
- At the detection limit of 15 mJy, we expect to obtain a contamination rate of < 10 percent
- Estimated total number: ≥ 40000
- Majority extra-galactic radio galaxies

Dominion Radio Astrophysical Observatory

Compact source clustering


Angular correlation function

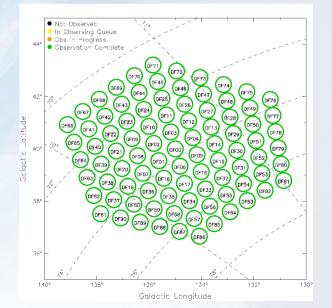
Flux limit: 15 mJy

Caution: Likely includes extra-galactic radio galaxies and Galactic sources.

Reliable separation of source origin necessary

Employed estimator of Landy & Szalay 1993

Dominion Radio Astrophysical Observatory


Summary and future work

The CGPS catalogue provides a new window on the radio source population at 408 MHz (so far the largest catalogue established at this frequency)

Further characterization of sources (nature, radio spectral behaviour)

Cross-matching with other catalogues and data sets (e.g. FIRST (for position accuracy), Herschel, WISE, Planck, X-ray etc.)

Extension of this work to other data sets (e.g. SPIDER field; for comparison and to study complications in the Galactic plane)

