The dynamics and evolution of Hα selected star-forming galaxies since z=2.23

David Sobral

CAAUL Lisbon/Leiden Obs.

<u>Mark Swinbank, John Stott, Jorryt Matthee,</u> Richard Bower, Philip Best, Ian Smail, Edo Ibar, Yusei Koyama, Ray Sharples, Jim Geach, +

with SINFONI & KMOS

How (and driven by which mechanisms)

do galaxies form and evolve?

Equally selected "Slices" with >1000 star-forming galaxies in multiple environments and with a range of properties

Ha (-- NB)

- Sensitive, good selection
- Well-calibrated
- Traditionally for Local Universe
- Narrow-band technique
- Now with Wide Field near-infrared cameras: can be done over large areas
 - And traced up to z ~ 3

HIZELS The High Redshift Emission Line Survey (Geach+08,Sobral+09,12,13a) (+Deep NBH + Subar-HiZELS + HAWK-I)

- Deep & Panoramic extragalactic survey, narrowband imaging (NB921, NBJ, NBH, NBK) over ~ 5-10 deg²
- ~80 Nights UKIRT+Subaru
 +VLT+CFHT+INT
- Narrow-band Filters target Ha at z=(0.2), 0.4, 0.8, 0.84, 1.47, 2.23
- Same reduction+analysis
- Other lines (simultaneously; Sobral+09a,b,Sobral+12,13a,b, Matthee+14)

<u>Sobral et al. 2013a</u>

Ha Star formation History

Strong decline with cosmic time

Sobral+13a

Stellar Mass density evolution

Star formation history prediction matches observations

Ha Star formation History

Strong decline with cosmic time

log₁₀(SFRD) = -2.1/(1+z)

Sobral+13a

Equally selected "Slices" with >1000 star-forming galaxies in multiple environments and properties

Sobral+13a

SFR function: Strong SFR*evolution

SFR function: Strong SFR*evolution

Sobral+14

T, Gyrs Faint-end slope: a = -1.6 -1.60 ± 0.08 α -2.0 $\log(\Phi \text{ (Mpc}^{-3}))$ -2.5 -3.0 -3.5 -4.0 -4.5 z=0.4 (This Study z=0.84 (This Study -5.0 z=1.47 (This Study -5.5 0.3 1.0 3.0 10.0 30.0 100 300 1000 0.1

SFR (M_{\odot} vr⁻¹)

z=1

<mark>₫</mark>*

Z=(

 $SFR^{*}(T) = 10^{(4.23/T+0.37)} M_{o}/yr$

Sobral+14

Integral Field Units, IFUs e.g. SINFONI / VLT Hα-selected targets are ideal

-0 5

-1.0

CFHTLS

⁻¹331.5 332.0 332.5 333.0 333.5

334.0 334.5 335.0 335.5 336.0

Very efficient combination to get sub-kpc resolution

Swinbank al. 2012a,b

-6 -4 -2 0 2 4 6

From AO IFU observations

~5 hours of VLT time

Swinbank al. 2012a,b

-6 -4 -2 0 2 4 6

From AO IFU observations

~10 hours of VLT time

ç

ğ o

Swinbank al. 2012a,b

-6 -4 -2 0 2 4 6

-2 0 kpc

velocity-model

From AO IFU observations

~20 hours of VLT time

Swinbank al. 2012a,b

From AO IFU observations

~45 hours of VLT time

Swinbank et al. 2012a

Swinbank al. 2012b

(MNRAS/ApJ):

- Star-forming clumps: scaledup version of local HII regions

- Negative metallicity gradients: "inside-out" growth

z~0 SDSS (Peng+10)

log (1+delta) Overdensity

The fraction of (non-merging) star-forming galaxies declines with <u>both</u> mass and environment

Koyama et al. 2013

What about their dynamics?

(For "extreme" environmental effects see e.g. Stroe et al. 2014)

300 k NB detections 6400 line emitters

3500 Ha z=0.8

Density of Ha emitters z=0.81+-0.01

S+13b, Matthee+14

24 IFUs at the same time!

24 IFUs at the same time!

4h Science Verification-time

Observations June 2013 + September 2013

Swinbank al. 2012a

velocity-model

-6 -4 -2 0 2 4

From AO IFU observations

~5 hours of VLT time

2 hours of VLT time

Confirmed <u>group</u> at z=0.813 (13 galaxies)

7 within r=1.5Mpc

Median mass: $10^{10.2} M_{\circ}$ sSFRs = 0.2-1.1 Gyr⁻¹

wavelength (µm)

Metallicities KMOS galaxies z=0.81 <u>12+log(O/H) = 8.62 +-0.07</u> Solar value: 8.66 +-0.07

Group galaxies slightly more metal rich

> <u>but also</u> <u>more</u> massive

Stott, Sobral et al. 2013b

HiZELS "Fundamental" Mass-Metallicity-SFR relation at z~I-2

Stott, Sobral et al. 2013b

Stott, Sobral et al. 2014, submitted

Evolution of the Tully Fisher relation?

CF-HIZELS KMOS SAMPLE

just 4 hours! (with overheads)

Stott et al. 2014, Sobral, Swinbank et al. 2013

CO follow-up well underway with PdBI and ALMA

 $\begin{array}{l} M_{gas} = 1.3 \times 10^{10} M_o \ (a=2) \\ M^* = 2.4 \times ^{10} M_o \\ f_{gas} \sim 30.50\% \\ M_{gas} / \ SFR \sim 1 \ Gyr \end{array}$

Metallicity gradients for CF-HiZELS **KMOS** sample

Agreement with SINFONI results (Swinbank+12a)

2.0

1.0

1.5

r/r

0.6

r/r

r/r

0.6 0.8

r/r

r/r

0.8

1.0

0.4

Mostly negative or flat, very few positive

Can we reconcile apparently discrepant results at z~1-2 (negative vs positive metallicity gradients)?

Stott et al. 2014

Metallicity Gradients increase with increasing sSFR

Suggests high sSFRs may be driven by funnelling of "metal poor" gas into their centres

Results may help to explain the FMR (negative correlation between metallicity and SFR at fixed mass)

Conclusions:

- Hα selection z~0.2-2.2: Robust, <u>self-consistent SFRH</u> + Agreement with the stellar mass density growth

- The **bulk of the evolution** over the **last 11 Gyrs** is in the **typical SFR (SFR*) at all masses:** <u>factor ~13x</u>

- SINFONI w/ AO: Star-forming galaxies since z=2.23: ~75% "disks", negative metallicity gradients, many show clumps

- <u>KMOS+Hα (NB)</u> selection works extraordinarily well: resolved dynamics of typical SFGs in ~1-2 hours, 75+-8% disks, 50-275km/s

- <u>KMOS</u>: Confirmed a rich group of star-forming galaxies at z=0.813 with ~solar metallicities, typical SFRs, all disks. Group galaxies more massive & slightly lower sSFRs + higher Metallicity, but the same TF and mass-metallicity relations

- KMOS CF-HiZELS: Metallicity gradients correlate with sSFR: FMR & explains discrepancies ?

CF-HIZELS KMOS SAMPLE

just 4 hours! (with overheads)

Stott et al. 2014, Sobral, Swinbank et al. 2013

SF History - Full population and 4 mass bins

Although:

Stott et al. 2013a

75+-8% Disks

Shallow, negative metallicity gradients

Rotation speeds of 50-275 km/s

~solar metallicity

<u>Group galaxies:</u> <u>100% disks</u>

Over the last 11 Gyrs

Decrease with time at all masses

Tentative peak per dLogM at ~10¹⁰ M_o since z=2.23

Mostly no evolution apart from normalisation

Sobral et al. (13C)

Stott, Sobral et al. 2013b

150

100

50

250

200

100

50

300

200 ž 100

1,17

1,17

ž 150)

1,17

1.18

1.19

1,19

1,19

1,18

1.18

lambdo (um)

lambdo (um)

Galaxy:NBJ_CFHT_1759

1.20

1.20

lambdo (um)

Galaxy:NBJ_CFHT_1739

1.20

ž

kpc

kpc

1,19

lambda (um)

Galaxy:NBJ_CFHT_1740

1.20

Galaxy:NBJ_CFHT_1790

1.19

lambda (um)

Galaxy:NBJ_CFHT_1789

1.19

lombdo (um)

Galaxy:NBJ_CFHT_1745

1.20

1.20

150

100

50

1,17

120 100

80 ž 60

-20

250

200

150 ã 100

50

-50

1.18

1.17

1.18

1.18

ž

Exploring a wide range of local densities: same selection/survey

Cluster? Proto-cluster? How special are these galaxies? What are their dynamics?

CFHT/WIRcam survey

Extinction-Mass z~0-1.5

Garn & Best 2010: Stellar Mass correlates with dust extinction in the local Universe

Relation holds up to z~1.5-2

FIR derived A_{Ha} = 0.9-1.2 mag

Filters combined to improve selection: double/triple line detections

2 sq deg: COSMOS + UDS

Prior to HiZELS ~10 sources

<u>Ha emitters in HiZELS</u> <u>2 sq deg: COSMOS + UDS</u>

Prior to HiZELS: ~10 sources

z=0.4: <u>1122</u> z=0.8: <u>637</u> z=1.47: <u>515</u> and z=2.23: <u>807</u>

Wavelength (μm)

~ Become dominant at $L>2L^*$ (H-alpha)

~10 % z~0.8

S+ in prep

Mass and/or environment?

at z~1

Sobral et al. 2011

Merger fraction of star-forming galaxies depends mostly on environment, not mass

Stellar mass sets colours of <u>star-forming</u> galaxies, NOT environment

Preparing the OBs for KMOS: KARMA

Ζ

Selection Matters:

<u>z~1.5-2.23</u> <u>UV selection</u>: metal-poor

Same masses

Ha selection: only slightly subsolar

> Swinbank+12a Stott+13b

Conclusions:

KMOS+iHa selected works extraordinarily well: resolved dynamics in ~1-2 hours, 75+-8% disks, 50-275km/s

Confirmed a rich group of star-forming galaxies at z=0.813 with ~solar metallicities, typical SFRs, all disks

Confirmed the weak TF ZP evolution to z~1

Group galaxies more massive & slightly lower sSFRs + higher Metallicity, but the same TF and mass-metallicity relations

- More data were taken in September - doubles the sample size. Results in ~2 months. Data is public!

Institute of Astrophysics and Space Sciences

Morphologies: ACS+CANDELS Ha Star-forming galaxies since z=2.23

Disk-like/Non-mergers ~75% Mergers/Irregulars ~25%

Mergers ~ 20-30% up to z=2.23

Sizes (M*): 3.6+-0.2 kpc **Table 1.** The size-mass relations at each redshift slice, of the form $\log_{10} r_e = a (\log_{10} (M_{\star}) - 10) + b$. Where r_e and M_{\star} are in units of kpc and M_{\odot} respectively.

z	a	ь	$r_e ext{ at } \log_{10}\left(M_\star ight) = 10$ (kpc)
0.40	$0.08 {\pm} 0.02$	0.55 ± 0.03	3.6±0.2
0.84	0.03 ± 0.02	0.54 ± 0.01	3.5 ± 0.1
1.47	0.03 ± 0.02	0.59 ± 0.01	3.9 ± 0.2
2.23	0.08 ± 0.03	0.51 ± 0.02	3.3 ± 0.2

Sobral+09a, Stott+13a
Morphology-SFR relation at z~1

Sobral et al. 2009a

- Depends on SFR / H-alpha Luminosity
- Disks/non-mergers completely dominate at SFR<SFR*, (L<L*)
- Population "shift"~SFR*: Irr/mergers dominant (reaching 100%)

Mergers?

Stott et al. 2013a

Mørgers responsible for \sim 20% SFRD since z=2.2 (S \otimes 2